Soma de infinitos termos de uma progressão geométrica de razão r
Ver também: Soma de n termos de uma progressão geométrica
Explicações de Ensino Superior. EuExplico® é uma marca Portuguesa registada no INPI com o nº 739290. Veja a lista de matérias já disponíveis. Há sempre novas matérias em preparação e novos serviços a serem disponibilizados. Para mais informações contacte-nos: eu.explico.lhe @ gmail.com/+351 964 260 563
Quando temos sinais cos(ωt) ou sen(ωt), o período destes sinais é:
T = 2π/ω
Para os sinais acima, temos:
Para sabermos se a soma dos sinais é periódica, temos que fazer a razão entre o menor dos períodos e cada um dos outros. Se forem quocientes (fracções) de números inteiros, então o sinal soma é também periódico.
T₃/T₁ = (4π/5)/(6π) = 2/15 → Razão de n.º inteiros ✓
T₃/T₂ = (4π/5)/(7π) = 4/35 → Razão de n.º inteiros ✓
Para calcular o período fundamental da soma, temos que determinar o mínimo múltiplo comum entre os dois denominadores dos períodos acima:
mmc(15, 35) = 105
T₀ = 105 x T₃ = 105 x 4π/5 ⟹ T₀ = 84π