Pesquisar neste blogue

Mostrar mensagens com a etiqueta Sinais e Sistemas. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Sinais e Sistemas. Mostrar todas as mensagens

quarta-feira, 16 de abril de 2025

Resumo extraído do Capítulo 1 do livro Introduction to Signal Processing de Sophocles J. Orfanidis

Capítulo 1 – Amostragem e Reconstrução 

1.1 Introdução

O processamento digital de sinais analógicos ocorre em três etapas:

  1. Digitalização: o sinal analógico é amostrado e quantizado, processo conhecido como conversão A/D.

  2. Processamento: os sinais digitalizados são manipulados por um processador digital de sinais (DSP).

  3. Reconstrução: os sinais processados são convertidos novamente para formato analógico através de uma conversão D/A.

O DSP pode ser implementado com computadores de uso geral, microprocessadores, chips DSP dedicados ou hardware especializado. Os conceitos fundamentais de amostragem e quantização são os pilares do processamento digital e serão aprofundados nos dois primeiros capítulos.


1.2 Revisão de Sinais Analógicos

Esta secção revê conceitos fundamentais:

  • Um sinal analógico é uma função contínua no tempo, x(t)x(t).

  • O espectro de frequência é obtido através da Transformada de Fourier X(Ω)X(\Omega), onde Ω=2πf\Omega = 2\pi f.

  • A Transformada de Fourier permite representar o sinal como uma soma de sinusoides.

  • A Transformada de Laplace generaliza a de Fourier, introduzindo s=σ+jΩs = \sigma + j\Omega, útil na análise de sistemas com exponenciais.

  • O sistema linear é caracterizado por uma resposta ao impulso h(t)h(t), e a saída y(t)y(t) é dada pela convolução entre x(t)x(t) e h(t)h(t).

  • No domínio da frequência, a saída é Y(Ω)=H(Ω)X(Ω)Y(\Omega) = H(\Omega)X(\Omega), onde H(Ω)H(\Omega) é a resposta em frequência do sistema.

A filtragem permite atenuar ou realçar componentes de frequência específicas.


1.3 Teorema da Amostragem

Esta secção explora os fundamentos da amostragem:

  • A amostragem de um sinal consiste em medir o seu valor a intervalos regulares TT, com taxa de amostragem fs=1/Tf_s = 1/T.

  • A amostragem replica o espectro do sinal em múltiplos inteiros de fsf_s, o que pode levar a aliasing (sobreposição de espectros).

  • Para evitar aliasing, o Teorema da Amostragem estabelece que:

    1. O sinal deve ser limitado em banda (não conter frequências acima de fmaxf_{max}).

    2. A taxa de amostragem deve ser pelo menos o dobro da frequência máxima: fs2fmaxf_s \geq 2f_{max} (chamada taxa de Nyquist).

1.3.2 Filtros Anti-Aliasing

Antes da amostragem, é necessário aplicar um filtro passa-baixo analógico que limita o sinal à banda permitida (até fs/2f_s/2) para evitar aliasing.

1.3.3 Limitações de Hardware

O hardware impõe uma limitação superior à taxa de amostragem, pois cada amostra requer um tempo de processamento TprocT_{proc}. Assim, a taxa deve satisfazer:

2fmaxfsfproc2f_{max} \leq f_s \leq f_{proc}

1.4 Amostragem de Sinusoides

A análise da amostragem de sinais sinusoidais leva às mesmas conclusões do teorema da amostragem:

  • Um mínimo de duas amostras por ciclo é necessário para representar uma sinusoide.

  • Quando o sinal não está limitado em banda, conterá componentes de frequência infinitamente altas, impossibilitando uma amostragem correta.

  • Se violado o teorema, o processo de reconstrução poderá reconstruir uma frequência errada — fenómeno conhecido como aliasing.

O sinal reconstruído será uma versão do sinal original onde todas as frequências foram mapeadas para o intervalo de Nyquist.


1.5 Amostragem Prática e Reconstrução

1.5.1 Sampler Ideal e Reconstructor Ideal

  • Um amostrador ideal extrai o valor exato do sinal contínuo em instantes t=nTt = nT.

  • Um reconstructor ideal é um filtro passa-baixo com frequência de corte igual à frequência de Nyquist fs/2f_s/2.

  • Este reconstrutor remove as réplicas espectrais introduzidas pela amostragem e reconstrói o sinal original, se não houver aliasing.

1.5.2 Reconstrução Prática

  • Na prática, a reconstrução envolve:

    1. Um retentor de ordem zero, que mantém o valor da última amostra até à seguinte.

    2. Um filtro de suavização (low-pass) analógico que suaviza o sinal em degraus.

  • Este método introduz distorções, mas é amplamente utilizado por ser simples e eficaz em muitos casos.

1.5.3 Escolha do Filtro

  • Os filtros de reconstrução e antialiasing não podem ser ideais, mas devem atenuar suficientemente as componentes fora da banda desejada.

  • A ordem do filtro está relacionada com a rapidez de atenuação em dB por oitava:

    • Por exemplo: um filtro com atenuação de 60 dB/oct corresponde a um filtro de ordem 10 (regra: 6 dB/oct por ordem).

  • Filtros mais complexos têm melhor desempenho, mas maior custo e dificuldade de implementação analógica.


1.6 Oversampling e Decimação

Oversampling (sobreamostragem)

  • Aumentar a taxa de amostragem para além da taxa de Nyquist:

    • Vantagens:

      • Maior separação entre réplicas espectrais.

      • Permite usar filtros antialiasing com menor ordem.

      • Reduz o ruído de quantização (ver Capítulo 2).

      • Diminui a distorção por aliasing.

    • Exemplo: amostragem a 80 kHz para sinais com banda até 20 kHz.

Decimação

  • Redução controlada da taxa de amostragem:

    • Antes da redução, o sinal deve ser filtrado com um filtro digital de decimação para evitar aliasing.

    • O filtro atua sobre o sinal digital (pós-amostragem) e remove frequências acima da nova Nyquist.

  • Permite que a parte inicial do sistema opere com alta taxa de amostragem e, posteriormente, reduza a taxa para valores padrão (por exemplo, 44.1 kHz para CDs).


1.7 Interpolação Digital

Definição

  • Processo inverso da decimação: aumenta a taxa de amostragem.

  • Implica:

    1. Inserção de zeros entre as amostras (up-sampling).

    2. Aplicação de um filtro interpolador digital que suaviza o sinal e remove as imagens espectrais introduzidas pela inserção dos zeros.

Objectivos

  • Produzir um sinal com uma forma mais suave ou compatível com uma nova taxa de processamento.

  • Utilizado em:

    • Conversores digitais para analógico com oversampling.

    • Ajustes de taxas de amostragem entre sistemas com frequências diferentes.

Filtro de Interpolação

  • Deve ter corte em π/L\pi/L (onde LL é o fator de interpolação).

  • Tal como na decimação, a qualidade do filtro determina o nível de distorção.


Capítulo 1 do livro Introduction to Signal Processing de Sophocles J. Orfanidis

 


🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

quarta-feira, 26 de março de 2025

Resumo extraído do Capítulo 2 do livro "Signals and Systems" de Oppenheim e Nawab

Este capítulo apresenta a base matemática dos sistemas LTI, destacando a convolução como ferramenta central. As propriedades estabelecidas são fundamentais para análise e projeto de sistemas, em Sinais e Sistemas.

Resumo do Capítulo 2: Sistemas Lineares Invariantes no Tempo (LTI)

2.0 Introdução

Os sistemas lineares e invariantes no tempo (LTI), desempenham um papel essencial na análise de sinais e sistemas. A linearidade e a invariância no tempo são propriedades fundamentais que facilitam a modelação de processos físicos e permitem uma análise detalhada com ferramentas matemáticas como a convolução.

2.1 Sistemas LTI em Tempo Discreto: Soma de Convolução

Representação de Sinais em Tempo Discreto

A ideia principal é representar um sinal discreto como uma combinação linear de impulsos unitários deslocados. Isso permite decompor qualquer sinal x[n] na forma:

x[n]=k=x[k]δ[nk]x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]

Resposta ao Impulso e Soma de Convolução

Para sistemas lineares, a resposta a um impulso deslocado pode ser expressa em termos da resposta ao impulso unitário, h[n]. Assim, a saída y[n] de um sistema LTI pode ser obtida pela soma de convolução:

y[n]=k=x[k]h[nk]y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k]

Esta expressão implica que um sistema LTI é completamente caracterizado pela sua resposta ao impulso.

Exemplos

Vários exemplos ilustram o cálculo da convolução em tempo discreto, incluindo sinais exponenciais e funções degrau.

2.2 Sistemas LTI em Tempo Contínuo: Integral de Convolução

Representação de Sinais Contínuos

Sinais contínuos podem ser representados como uma soma de impulsos infinitesimais, levando à expressão integral:

x(t)=x(τ)δ(tτ)dτx(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau

Resposta ao Impulso e Integral de Convolução

Analogamente ao caso discreto, a saída de um sistema LTI contínuo pode ser obtida através do integral de convolução:

y(t)=x(τ)h(tτ)dτy(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau

Exemplos

São discutidos exemplos práticos de cálculo de convolução em sinais exponenciais e retangulares, demonstrando a aplicação prática do integral de convolução.

2.3 Propriedades dos Sistemas LTI

Comutatividade

A convolução é uma operação comutativa:

x[n]h[n]=h[n]x[n]x[n] * h[n] = h[n] * x[n]

Distributividade

A convolução distribui-se sobre a adição:

x[n](h1[n]+h2[n])=x[n]h1[n]+x[n]h2[n]x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]

Associatividade

A associação de três sinais na convolução é independente da ordem:

x[n](h1[n]h2[n])=(x[n]h1[n])h2[n]x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]

Estas propriedades facilitam a análise e simplificação de circuitos e sistemas.


Capítulo 2 do livro "Signals and Systems" de Oppenheim e Nawab




🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

segunda-feira, 10 de março de 2025

Sinais e Sistemas - FEUP - exame de 24-1-2017, pag 6 de 6

Resolução das perguntas de escolha múltipla versão A.
A página 5 está aqui.

Sinais e Sistemas - FEUP - exame de 24-1-2017




Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


sexta-feira, 7 de março de 2025

Resumo extraído do Capítulo 1 do livro "Signals and Systems" de Oppenheim e Nawab



O primeiro capítulo do livro "Signals and Systems" de Oppenheim e Nawab introduz os conceitos fundamentais de sinais e sistemas, abordando a sua classificação, propriedades e representações matemáticas.


1.1 Introdução aos Sinais

Os sinais são funções matemáticas que representam quantidades variáveis no tempo ou noutro domínio. Estes podem ser classificados como:

  • Sinais de tempo contínuo x(t)x: definidos para todo tR.
  • Sinais de tempo discreto x[n]: definidos apenas para valores inteiros .

Os sinais podem ainda ser categorizados de acordo com:

  • Periocidade: periódicos ou aperiódicos.
  • Determinismo: determinísticos ou aleatórios.
  • Energia e potência: sinais de energia finita ou potência finita.

1.2 Transformações no Domínio do Tempo

Os sinais podem sofrer diversas transformações no tempo, tais como:

  • Deslocamento temporal: x(tt0) representa um atraso e x(t+t0) representa um avanço, quando t0 > 0.
  • Escalonamento temporal: x(at) comprime ou expande o sinal.
  • Inversão temporal: x(treflete o sinal em torno da origem.

1.3 Sinais Exponenciais e Sinusoidais

Os sinais exponenciais e sinusoidais são fundamentais em muitas aplicações, sendo expressos como:

x(t)=Ce(at)

onde C e a podem ser números complexos. Se a for puramente imaginário (jωj), o sinal será um sinusoide:

x(t)=Acos(ωt+θ)x(t) 

Os sinais sinusoidais são essenciais porque qualquer sinal periódico pode ser expresso como uma soma de sinusoidais (série de Fourier).


1.4 Sinais de Tempo Discreto

No domínio discreto, os sinais exponenciais e sinusoidais são representados como:

x[n]=Ae(jωn)

onde ω está confinado a um intervalo [pi,pi] devido à periodicidade do domínio discreto.


1.5 Sistemas de Tempo Contínuo e Discreto

Os sistemas processam sinais e podem ser classificados como:

  • Tempo contínuo ou discreto: dependendo se as entradas e saídas são contínuas ou discretas.
  • Determinísticos ou estocásticos: dependendo da previsibilidade da resposta do sistema.
  • Causais ou não causais: um sistema é causal se a saída em um instante depender apenas de entradas presentes ou passadas.

Exemplo de sistema em tempo contínuo:

dy(t)dt+ay(t)=bx(t)

Exemplo de sistema em tempo discreto:

y[n]=0.9y[n1]+x[n]

1.6 Propriedades dos Sistemas

Os sistemas possuem diversas propriedades:

  • Linearidade: segue o princípio da sobreposição S(ax1+bx2)=aS(x1)+bS(x2)
  • Invariância no tempo: o comportamento não depende do instante em que é analisado.
  • Estabilidade: entradas limitadas resultam em saídas limitadas.
  • Causalidade: a saída depende apenas de valores presentes e passados da entrada.

signals-and-systems-Oppenheim and Nawab 2thEd Cap 1




Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


quinta-feira, 6 de março de 2025

Resolução das perguntas de escolha múltipla versão A, pag5 de 6


Sinais e Sistemas - FEUP - exame de 24-1-2017

A página 4 está aqui.


Resolução das perguntas de escolha múltipla versão A, pag5 de 6




Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


domingo, 2 de março de 2025

Sinais e Sistemas - FEUP - exame de 24-1-2017, pág 4 de 6


A página 3 está aqui.


Sinais e Sistemas - FEUP - exame de 24-1-2017, pág 4 de 6


Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


quinta-feira, 13 de fevereiro de 2025

Sinais e Sistemas - ISEP, exame de 5-2-2024


Resolução da pergunta 6, Parte 2.

Resolução da pergunta 6, Parte 2 pag1

Resolução da pergunta 6, Parte 2, pag2






Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


sábado, 8 de fevereiro de 2025

Resolução das perguntas de escolha múltipla versão A

Sinais e Sistemas - FEUP - exame de 24-1-2017, pág 3 de 6

A pág 2 está aqui.



Sinais e Sistemas - FEUP - exame de 24-1-2017, pág 3 de 6


Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


domingo, 2 de fevereiro de 2025

Sinais e Sistemas - FEUP - exame de 24-1-2017


Resolução das perguntas de escolha múltipla versão A, pag2 de 6
A página 1 está aqui.


Resolução das perguntas de escolha múltipla versão A, pag2 de 6



Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


quarta-feira, 29 de janeiro de 2025

Sinais e Sistemas - FEUP


Resolução das perguntas de escolha múltipla versão A, pag1 de 6

A pág 2 está aqui.

Resolução das perguntas de escolha múltipla versão A, pag1 de 6




Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


sábado, 19 de outubro de 2024

Sinais e Sistemas - ISEL


Página 1 da resolução de um problema de exame.





Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


terça-feira, 25 de junho de 2024

Potência - Resolução de problema de teste/exame de Sinais e Sistemas do ISEL


Pretende-se determinar a potência, em Watt, de dois sinais descritos pela sua equação matemática em função do tempo.





Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


domingo, 23 de junho de 2024

SLIT - Resolução de problema de teste/exame de Sinais e Sistemas do ISEL


Pretende-se determinar a resposta global do SLIT representado no diagrama de blocos


Contacte-nos para ver a pág. 2




Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


quarta-feira, 19 de junho de 2024

TF - Resolução de problema de teste/exame de Sinais e Sistemas do ISEL


Pretende-se determinar a Transforma de Fourier usando as tabelas de transformadas e de propriedades.



Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


segunda-feira, 3 de julho de 2023

Controlo de sistemas: modelação de sistema físico e simulação em Matlab

Modelo matemático, em equação diferencial, de um sistema constituído por uma massa, uma mola e um amortecedor. A Massa está presa a uma parede pela mola e pelo amortecedor e é-lhe aplicada uma força em forma de degrau unitário.
Estuda-se o efeito, na resposta ao degrau, da alteração dos parâmetros: constante da elasticidade da mola, valor da massa e constante do amortecedor.

Código em Matlab para a 1ª simulação:

M=2; B=0.2; K=1;
s = tf('s'); sys1 = 1/(M*s^2+B*s+K)
hold on;
t =0:0.01:120; U = ones(size(t));
U(1:100)=0;
y = lsim(sys1,U,t);
plot(t,U,'r','linewidth',2);hold on;
plot(t,y,'k','linewidth',2); grid on
legend('Força: U=1N', 'Deslocamento em relação ao ponto de equilíbrio [metro]');
xlabel('tempo[s]');
title('Resposta de um sistema Massa Mola Amortecedor à entrada degrau unitário', 'M=2kg, B=0.2Ns/m, k=1N/m');









Se quiser explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. 



quarta-feira, 14 de junho de 2023

App para determinar Transformada de Laplace

Introduza na app abaixo a função no domínio do tempo (t) e clique em submit para obter a Transforma de Laplace da função. 
Se introduzir a resposta impulsiva, h(t), obterá a função de transferência, H(s).




Se quiser explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. 



domingo, 21 de maio de 2023

Determinar Transformada de Laplace Inversa


Introduza na app abaixo função no domínio da frequência, de Laplace (S), e clique em submit para obter a função no domínio do tempo. 
Se introduzir a fração correspondente à função de transferência, H(s), obterá a resposta impulsiva, h(t).








Se quiser explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. 



quinta-feira, 27 de abril de 2023

Resposta, y(t), por convolução de h(t) com x(t)

Determinar a resposta, y(t), de um sistema com resposta impulsiva, h(t), a uma entrada, x(t), efetuando a convolução.

Ver Pág. 1 AQUI.

Pág 2 

Pág 3 

Ver Pág. 4 AQUI.



Se quiser explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. 

segunda-feira, 13 de fevereiro de 2023

Erros do ChatGPT / ChatGPT mistakes

Só tive disponibilidade para criar conta e testar o #ChatGPT há 2 dias, em 11/2/2023.
Fiz 4 perguntas das quais ele falhou 3. 
Aqui ficam os resultados dos testes que fiz.

I only had available time to create account and test #ChatGPT 2 days ago, on 11/2/2023.
I asked 4 questions of which it failed 3. 
Here are the results of the tests I did.









Chamo a atenção para o deslumbramento que se criou em torno do #ChatGPT.
As pessoas estão a deixar de pensar com os seus próprios neurónios e estão a acreditar em tudo o que lêm na internet, venha do ChatGPT ou de qualquer outra fonte. 
O ser humano está a tornar-se um subdito estúpido da Inteligência Artificial (IA) e isso levará ao extermínio do ser humano.
A IA é para ser usada em benefício do ser humano e não para substituir o ser humano.
Há que aproveitar o que nos pode proporcionar de bom, mas não podemos deixar de usar os nossos neurónios. 

I call attention to the fascination that has been created around #ChatGPT.
People are stopping thinking with their own neurons and are believing everything they read on the internet, whether it comes from ChatGPT or any other source. 
The human being is becoming a stupid subordinate of Artificial Intelligence (AI) and this will lead to the extermination of the human being.
AI is to be used for the benefit of the human being and not to replace the human being.
We have to take advantage of what it can provide us with good, but we can't stop using our neurons.



Se quiser explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. 

sexta-feira, 26 de agosto de 2022

Convolução em tempo discreto usando o Matlab

Obter com o Matlab a saída, y[n], do sistema em tempo discreto cuja resposta impulsiva é h[n], quando a entrada é um sinal x[n].




Se quiser explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. 

Formulário de Contacto

Nome

Email *

Mensagem *