Pesquisar neste blogue

Mostrar mensagens com a etiqueta Sinais e Sistemas. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Sinais e Sistemas. Mostrar todas as mensagens

quarta-feira, 9 de julho de 2025

Resumo extraído do Capítulo 3 do livro "Signals and Systems" de Oppenheim e Nawab

Capítulo 3: Representação de sinais periódicos em séries de Fourier

3.1 Perspectiva Histórica

Esta secção traça a evolução histórica da análise de Fourier, mostrando como a ideia de decompor fenómenos periódicos em somas de funções trigonométricas remonta à antiguidade (por exemplo, os babilónios na astronomia). No século XVIII, Euler estudou cordas vibrantes, introduzindo a ideia de modos normais como combinações de senos e cossenos. Bernoulli defendeu que todos os movimentos de uma corda poderiam ser representados assim, mas Lagrange criticou a validade para sinais com descontinuidades.
Joseph Fourier retomou o conceito no início do século XIX para estudar a propagação de calor, afirmando que qualquer fenómeno periódico poderia ser descrito por séries de senos e cossenos, mesmo com descontinuidades — uma ideia inovadora mas inicialmente controversa. Fourier enfrentou resistência (inclusive de Lagrange) e dificuldades para publicar o seu trabalho, mas a sua Théorie analytique de la chaleur (1822) tornou-se fundamental. Fourier foi além das séries, propondo a transformação integral (base do que hoje chamamos Transformada de Fourier) para sinais aperiódicos. O impacto do seu trabalho estende-se por múltiplas áreas da ciência, engenharia e matemática, incluindo tópicos como integração, séries temporais, difusão de calor, sinais sinusoidais em circuitos de corrente alternada, ondas marítimas e transmissão de rádio. Finalmente, o texto destaca que, para sinais em tempo discreto, a análise harmónica ganhou relevância com o desenvolvimento da Transformada Rápida de Fourier (FFT) nos anos 60, revolucionando a computação digital de séries de Fourier.


3.2 Resposta de Sistemas LTI a Exponenciais Complexas

Esta secção demonstra porque é que as exponenciais complexas são tão importantes na análise de sistemas lineares e invariantes no tempo (LTI). O ponto central é que uma exponencial complexa é uma função própria de um sistema LTI: a resposta do sistema a uma entrada exponencial é a mesma exponencial multiplicada por um factor constante (o valor próprio ou ganho de frequência do sistema).
Em termos contínuos, uma entrada este^{st} gera uma saída H(s)estH(s)e^{st}, onde H(s)H(s) é a transformada de Laplace da resposta impulsional. No caso discreto, uma entrada znz^n gera uma saída H(z)znH(z)z^n.
Como consequência, qualquer sinal que possa ser escrito como combinação linear de exponenciais complexas pode ser analisado decompondo cada componente, aplicando a propriedade da sobreposição. Assim, se a entrada for uma soma de exponenciais, a saída será uma soma das mesmas exponenciais, escaladas pelos ganhos de frequência correspondentes. Esta ideia justifica a relevância das séries e transformadas de Fourier para representar sinais e estudar sistemas.
Inclui-se um exemplo de um sistema que apenas aplica um atraso de tempo, mostrando que a exponencial é efectivamente função própria — a saída é a entrada atrasada multiplicada por uma fase.


3.3 Representação de Sinais Periódicos em Tempo Contínuo (Série de Fourier)

Aqui é introduzida formalmente a Série de Fourier para sinais periódicos em tempo contínuo. Define-se que um sinal é periódico se x(t)=x(t+T)x(t) = x(t + T) para um período TT. O sinal pode ser expresso como uma soma de exponenciais complexas com frequências harmónicas múltiplas da fundamental:

x(t)=k=akejkω0tx(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}

com ω0=2π/T\omega_0 = 2\pi/T.
É demonstrado que combinações lineares de exponenciais harmonicamente relacionadas continuam a ser periódicas. Apresenta-se a relação entre exponenciais e senos/cossenos, mostrando como sinais reais podem ser escritos em forma trigonométrica.
Segue-se o processo de determinação dos coeficientes aka_k (análise) através de integração ao longo de um período, baseando-se na ortogonalidade das exponenciais. Também se ilustra a interpretação física de cada termo: o coeficiente a0a_0 representa a componente DC (média), enquanto os outros descrevem a energia distribuída pelas harmónicas.
Exemplos práticos incluem uma onda sinusoidal, uma combinação de senos e cossenos, e uma onda quadrada — mostrando como sinais com descontinuidades podem ser aproximados por somas finitas de harmónicas.


3.4 Convergência da Série de Fourier

Esta secção discute as condições sob as quais a Série de Fourier efectivamente converge para o sinal original. Euler e Lagrange duvidavam da validade de representar funções descontínuas com somas de funções contínuas. Fourier, no entanto, mostrou que mesmo sinais como a onda quadrada podem ser representados correctamente no sentido de energia (ou seja, o erro quadrático médio tende para zero).
São introduzidas condições práticas de convergência:

  • Se um sinal for contínuo e de energia finita num período, a sua Série de Fourier converge.

  • Para sinais descontínuos, são apresentadas as condições de Dirichlet: o sinal deve ter energia finita, variação limitada (número finito de máximos e mínimos por período) e um número finito de descontinuidades.
    Se estas condições forem satisfeitas, a Série de Fourier converge para o sinal original em todos os pontos de continuidade e para a média dos limites laterais nos pontos de descontinuidade (ex. Gibbs phenomenon).
    O famoso fenómeno de Gibbs mostra que, perto das descontinuidades, a soma parcial da Série de Fourier apresenta oscilações que não desaparecem, mas concentram-se cada vez mais junto à descontinuidade à medida que se somam mais harmónicas. Mesmo assim, a energia do erro global tende para zero.


3.5 Propriedades da Série de Fourier em Tempo Contínuo

Esta secção organiza e descreve as propriedades fundamentais das Séries de Fourier para sinais periódicos em tempo contínuo. Estas propriedades são essenciais para simplificar cálculos e interpretar resultados.

As principais propriedades abordadas são:

  • Linearidade: A Série de Fourier é linear. Se dois sinais periódicos têm séries de Fourier conhecidas, qualquer combinação linear destes sinais resulta numa combinação linear dos coeficientes das séries.

  • Deslocamento Temporal: Um deslocamento no tempo de um sinal resulta numa rotação de fase nos coeficientes. Assim, se deslocarmos o sinal em t0t_0, os coeficientes multiplicam-se por ejkw0t0e^{-jkw_0 t_0}.

  • Inversão Temporal: Inverter um sinal no tempo equivale a inverter a sequência de coeficientes: akaka_k \rightarrow a_{-k}.

  • Escalonamento Temporal: Alterar a escala de tempo muda o período do sinal e a frequência fundamental, mas os coeficientes mantêm-se inalterados.

  • Multiplicação de Sinais: Multiplicar dois sinais periódicos no domínio temporal corresponde a uma convolução discreta dos seus coeficientes no domínio da frequência.

  • Conjugação: O conjugado de um sinal resulta nos coeficientes conjugados e invertidos: ak=aka_k^* = a_{-k}.

  • Sinais Reais: Se o sinal é real, os coeficientes são conjugados simétricos: ak=aka_{-k} = a_k^*.

  • Sinais Pares ou Ímpares: Para sinais reais, se forem pares, os coeficientes são reais e pares; se forem ímpares, os coeficientes são imaginários puros e ímpares.

  • Diferenciação e Integração: Derivar um sinal corresponde a multiplicar os coeficientes por jkw0jkw_0; integrar corresponde a multiplicar os coeficientes pelo inverso (salvo o termo DC).

  • Relação de Parseval: A potência média de um sinal periódico é igual à soma das potências médias de cada harmónica: 

  • 1TTx(t)2dt=k=ak2.\frac{1}{T} \int_{T} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2.

Estas propriedades são resumidas numa tabela para consulta rápida e exemplificadas com pequenos exercícios que mostram como podem poupar cálculos. A intuição é que manipulando sinais no tempo podemos prever e controlar o efeito sobre o espectro de Fourier.


3.6 Séries de Fourier em Tempo Discreto

Nesta secção, o conceito de Séries de Fourier é estendido a sinais periódicos em tempo discreto. A ideia principal é análoga ao caso contínuo, mas adaptada à natureza discreta dos sinais.

  • Um sinal discreto x[n]x[n] é periódico com período NN se x[n]=x[n+N]x[n] = x[n + N].

  • A representação em série de Fourier é dada por:

    x[n]=k=0N1akej(2π/N)kn.x[n] = \sum_{k=0}^{N-1} a_k e^{j(2\pi/N)kn}.
  • Os coeficientes são obtidos por:

    ak=1Nn=0N1x[n]ej(2π/N)kn.a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j(2\pi/N)kn}.

Comparando com o caso contínuo, destaca-se que:

  • O número de harmónicas distintas é finito (N coeficientes para período N).

  • Os expoentes são amostrados uniformemente no círculo unitário.

  • A periodicidade de ej(2π/N)kne^{j(2\pi/N)kn} implica que o espectro é também periódico (aliasing inerente).

São discutidos exemplos simples de sinais discretos, como sequências binárias ou impulsos periódicos, e mostra-se como se obtêm os espectros. Este formalismo é a base para o desenvolvimento posterior da Transformada Discreta de Fourier (DFT) e da FFT.


3.7 Propriedades da Série de Fourier em Tempo Discreto

Tal como na secção 3.5, mas agora no contexto discreto, são apresentadas as propriedades que permitem manipular séries de Fourier de sinais discretos:

  • Linearidade: Mantém-se.

  • Deslocamento Temporal: Deslocar uma sequência no tempo adiciona uma fase exponencial ao espectro.

  • Inversão Temporal: Inverter o sinal inverte os índices dos coeficientes.

  • Multiplicação: A multiplicação de duas sequências periódicas corresponde a uma convolução discreta circular dos seus coeficientes.

  • Parseval: A soma da energia de um período é igual à soma dos quadrados das magnitudes dos coeficientes:

    1Nn=0N1x[n]2=k=0N1ak2.\frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2 = \sum_{k=0}^{N-1} |a_k|^2.

Estas propriedades são organizadas numa tabela análoga à do caso contínuo, facilitando o uso prático em problemas de análise de sinais e sistemas discretos.


3.8 Resposta de Sistemas LTI a Sinais Periódicos

Esta secção liga tudo: mostra como as séries de Fourier permitem analisar a resposta de sistemas LTI a sinais periódicos, tanto contínuos como discretos.

A ideia é:

  • Se a entrada x(t)x(t) ou x[n]x[n] é uma combinação de exponenciais complexas, e sabendo que cada exponencial é função própria do sistema LTI, então a saída é simplesmente a soma das mesmas exponenciais multiplicadas pelos ganhos do sistema em cada frequência.

  • Assim, o sistema filtra cada harmónica de forma independente, modificando a amplitude e fase segundo a resposta em frequência H(jω)H(j\omega) ou H(ejΩ)H(e^{j\Omega}).

  • Na prática, isto significa que podemos prever o comportamento de circuitos, filtros digitais e outros sistemas LTI analisando a resposta em frequência e o espectro de entrada.

A secção termina com exemplos ilustrativos: por exemplo, um circuito RC filtrando uma onda quadrada, mostrando como o espectro de saída atenua harmónicas de alta frequência — demonstrando o papel da resposta em frequência como “peneira” de harmónicas.


Secção 3.9 — Filtragem

A filtragem consiste em alterar as amplitudes relativas dos componentes de frequência de um sinal ou até eliminar alguns completamente. Os sistemas LTI (Lineares e Invariantes no Tempo) que modificam o espectro de forma controlada são chamados de filtros modeladores de frequência. Os filtros selectivos de frequência deixam passar algumas frequências quase sem distorção e atenuam ou rejeitam outras.

Como vimos, no domínio da frequência, a saída de um sistema LTI resulta da multiplicação das componentes do sinal de entrada pela resposta em frequência do sistema. Por isso, projectar filtros passa por escolher adequadamente essa resposta em frequência.

3.9.1 Filtros modeladores de frequência

Um exemplo comum está nos sistemas de áudio. Os filtros LTI nesses sistemas permitem ao utilizador ajustar o balanço entre graves e agudos. Estes filtros formam etapas de um equalizador, muitas vezes dividido em vários estágios em cascata, cujo efeito global resulta do produto das respostas em frequência de cada estágio.

  • Mostram-se exemplos de curvas de magnitude em dB (20 log10 |H(jω)|), num gráfico log-log.

  • Outro exemplo importante é o filtro diferenciador, com resposta em frequência H(jω) = jω. Amplifica mais as componentes de alta frequência, o que o torna útil, por exemplo, para realçar contornos em imagens (realce de transições bruscas em brilho). A aplicação a imagens bidimensionais é ilustrada, mostrando como realça bordas verticais ou horizontais consoante o conteúdo espectral em cada direcção.

No domínio discreto, os filtros LTI também são fundamentais. Usam-se em processamento digital (capítulo 7), por exemplo para separar variações de curto e longo prazo em séries temporais (dados económicos, demográficos). Um exemplo simples é o filtro média de dois pontos:

y[n]=12(x[n]+x[n1])y[n] = \frac{1}{2} (x[n] + x[n-1])

que actua como um filtro passa-baixo, atenuando altas frequências e preservando variações lentas.


3.9.2 Filtros selectivos de frequência

Estes filtros são desenhados para deixar passar algumas bandas de frequência e rejeitar outras com a maior precisão possível. Por exemplo:

  • Em áudio, podem remover ruído de alta frequência.

  • Em comunicações (como AM), permitem separar canais codificados em diferentes bandas.

Existem tipos básicos bem definidos:

  • Passa-baixo: passa baixas frequências, rejeita altas.

  • Passa-alto: o inverso.

  • Passa-banda: passa uma banda específica.

As frequências de corte marcam as fronteiras entre bandas passantes e de rejeição.

A figura 3.26 ilustra a resposta em frequência de um filtro passa-baixo ideal. A figura 3.27 mostra filtros passa-alto e passa-banda ideais (observa-se simetria em torno de ω=0 porque usamos exponenciais complexas). Para tempo discreto, a resposta em frequência deve ser periódica (figura 3.28), com período 2π.

Embora úteis para especificação teórica, os filtros ideais não são realizáveis fisicamente. Na prática, usam-se aproximações com transições menos abruptas e características ajustadas a cada aplicação.


Secção 3.10 — Exemplos de filtros contínuos descritos por equações diferenciais

Os filtros contínuos reais são muitas vezes implementados por circuitos cujas relações entrada-saída obedecem a equações diferenciais lineares com coeficientes constantes.

3.10.1 Um filtro RC passa-baixo simples

Um exemplo clássico é o circuito RC de primeira ordem, com o condensador como saída. A equação diferencial:

RCdvc(t)dt+vc(t)=vs(t)RC \frac{dv_c(t)}{dt} + v_c(t) = v_s(t)

leva a uma resposta em frequência:

H(jω)=11+jωRCH(jω) = \frac{1}{1 + jωRC}

  • Para ω≈0, |H(jω)|≈1 → passa baixas frequências.

  • Para ω elevado, |H(jω)|→0 → atenua altas frequências.

O compromisso entre domínio do tempo e da frequência: aumentar RC melhora a atenuação de altas frequências mas torna a resposta ao degrau mais lenta.


3.10.2 Um filtro RC passa-alto simples

Escolhendo agora como saída a tensão na resistência, a equação diferencial muda para:

RCdvs(t)dt+vs(t)=vr(t)RC \frac{dv_s(t)}{dt} + v_s(t) = v_r(t)

dando uma resposta em frequência:

G(jω)=jωRC1+jωRCG(jω) = \frac{jωRC}{1 + jωRC}

  • Atenua baixas frequências.

  • Passa altas frequências (para ω ≫ 1/RC).

Tal como no caso passa-baixo, o valor de RC controla a forma da resposta em frequência e a velocidade da resposta no tempo. Ambos os circuitos são exemplos de filtros de primeira ordem, com transições suaves entre banda passante e de rejeição.


Secção 3.11 — Exemplos de filtros discretos descritos por equações às diferenças

Os filtros em tempo discreto são implementados por equações às diferenças lineares de coeficientes constantes. Podem ser:

  • Recursivos (IIR): têm resposta ao impulso infinita.

  • Não-recursivos (FIR): resposta ao impulso finita.

Ambos são muito usados em sistemas digitais.

3.11.1 Filtros recursivos de primeira ordem

Um exemplo simples:

y[n]ay[n1]=x[n]y[n] - a y[n-1] = x[n]

Para entrada exponencial complexa, a resposta em frequência é:

H(ejω)=11aejωH(e^{jω}) = \frac{1}{1 - a e^{-jω}}

  • Para a>0 (e |a|<1), actua como passa-baixo.

  • Para a<0 (e |a|<1), actua como passa-alto.

O parâmetro a controla tanto a largura da banda passante como a velocidade da resposta ao impulso ou degrau.


3.11.2 Filtros não-recursivos

Forma geral:

y[n]=k=NMbkx[nk]y[n] = \sum_{k=-N}^{M} b_k x[n-k]

Exemplo clássico: filtro de média móvel.
Para três pontos:

y[n]=13(x[n1]+x[n]+x[n+1])y[n] = \frac{1}{3}(x[n-1] + x[n] + x[n+1])

  • Atenua variações rápidas (altas frequências), passa variações lentas (baixas frequências).

  • O tamanho da janela controla a frequência de corte.

Outros filtros não-recursivos podem fazer passa-alto. Exemplo:

y[n]=12(x[n]x[n1])y[n] = \frac{1}{2}(x[n] - x[n-1])

atua como um diferenciador discreto, atenuando baixas frequências.

As principais características dos FIR:

  • Impulso finito → sempre estáveis.

  • Possibilidade de serem causais ou não, dependendo se dependem de amostras futuras.


Secção 3.12 — Resumo

O capítulo introduz a representação em séries de Fourier para sinais periódicos em tempo contínuo e discreto, explorando a motivação principal: as exponenciais complexas são autofunções de sistemas LTI.

Mostrou-se que:

  • Qualquer sinal periódico pode decompor-se numa soma ponderada de exponenciais harmónicas.

  • Aplicando um sinal periódico a um sistema LTI, cada coeficiente de Fourier na saída é o produto do coeficiente de entrada pelo valor da resposta em frequência nessa harmónica.

Isto conduz ao conceito de filtragem com sistemas LTI, incluindo a filtragem selectiva de frequência.

O capítulo discutiu:

  • Filtros ideais (não realizáveis) como referência teórica.

  • Exemplos práticos baseados em equações diferenciais (contínuo) e às diferenças (discreto).

  • A importância de compreender as respostas em frequência para conceber sistemas que realizem filtragem conforme os requisitos da aplicação.

Adiantou ainda que nos capítulos seguintes se desenvolverão ferramentas para sinais aperiódicos e uma análise mais detalhada da filtragem.


Capítulo 3 do livro "Signals and Systems" de Oppenheim e Nawab


🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

terça-feira, 3 de junho de 2025

Resumo extraído do Capítulo 2 do livro Introduction to Signal Processing de Sophocles J. Orfanidis

Capítulo 2 – Quantização

2.1 Processo de Quantização

Esta secção explica o processo fundamental de quantização, etapa essencial da conversão de sinais analógicos em digitais, após a amostragem.

  • Um conversor analógico-digital (ADC) converte cada amostra do sinal x(nT)x(nT) num valor quantizado xQ(nT)x_Q(nT), representável por um número finito de bits BB, com 2B2^B níveis de quantização.

  • A resolução do quantizador, ou largura de quantização QQ, é Q=R/2BQ = R/2^B, onde RR é a gama total do sinal (full-scale range).

  • A quantização por arredondamento é preferível à truncagem, pois introduz menor viés no erro de quantização.

  • O erro de quantização e(nT)=xQ(nT)x(nT)e(nT) = x_Q(nT) - x(nT) tem amplitude máxima de Q/2Q/2, e a variância média do erro é Q2/12Q^2/12. O erro pode ser modelado como ruído branco com distribuição uniforme em [Q/2,Q/2][-Q/2, Q/2], desde que o sinal ocupe bem a gama RR.

  • O modelo aditivo de ruído considera que xQ(n)=x(n)+e(n)x_Q(n) = x(n) + e(n), sendo e(n)e(n) ruído branco, estacionário, não correlacionado com o sinal.

  • Para sinais de baixa amplitude, o erro de quantização não é ruído branco, podendo introduzir distorções chamadas granulação.

  • A técnica de dithering (adição de ruído antes da quantização) pode eliminar essas distorções, tornando o erro mais aleatório, ainda que à custa de um aumento ligeiro do ruído (3 a 6 dB).


2.2 Sobreamostragem e modelação do ruído

Esta secção apresenta técnicas para melhorar a qualidade da quantização sem aumentar o número de bits por amostra.

Conceitos principais:

  • O ruído de quantização é uniformemente distribuído no espectro (ruído branco).

  • Com sobreamostragem (oversampling), o sinal é amostrado a uma taxa fs>fsf_s' > f_s. Isto espalha o ruído por uma banda maior, reduzindo o ruído na banda útil.

  • Mesmo com menor resolução (menos bits por amostra), o desempenho pode manter-se ou até melhorar devido ao maior número de amostras.

Cálculos:

  • Com sobreamostragem, a potência de ruído dentro da banda útil é reduzida: σe2=σe2/L\sigma_e^2 = \sigma_{e'}^2 / L, com L=fs/fsL = f_s' / f_s.

  • A poupança de bits por sobreamostragem sem modelação de ruído é pequena: ΔB=0.5log2L\Delta B = 0.5 \log_2 L.

  • Para aumentar essa poupança, usa-se modelação de ruído, que filtra o ruído de quantização com um filtro HNS(f)H_{NS}(f) para "empurrar" o ruído para fora da banda útil.

  • Com quantizadores de ordem pp e sobreamostragem, a poupança é maior: ΔB=(p+0.5)log2L0.5log2(π2p2p+1)\Delta B = (p + 0.5) \log_2 L - 0.5 \log_2\left(\frac{\pi^{2p}}{2p+1}\right).

  • Por exemplo, com ordem 2 e L=128L = 128, é possível obter o equivalente a um quantizador de 16 bits usando apenas 1 bit por amostra.

Aplicações:

  • Esta técnica é usada em conversores delta-sigma, presentes em leitores de CD, sistemas de áudio digital e codificação de voz.

  • O sistema de DSP com sobreamostragem permite filtros analógicos mais simples, menor resolução nos conversores, e ainda assim manter a qualidade através de filtragem digital (interpolação e decimação).


2.3 Conversores D/A

Esta secção discute os conversores digital-analógico (DACs), focando-se nas convenções de codificação e funcionamento lógico, sem entrar em detalhes eléctricos.

  • Um DAC de BB bits converte uma palavra digital [b1,b2,...,bB][b_1, b_2, ..., b_B] num valor analógico xQx_Q dentro da gama RR.

  • Três tipos de codificação:

    1. Unipolar natural binario: xQ=Ri=1Bbi2ix_Q = R \cdot \sum_{i=1}^{B} b_i \cdot 2^{-i}

    2. Bipolar offset binario: igual ao anterior, mas com deslocamento R/2-R/2

    3. Complemento para dois: semelhante ao offset binario, mas com o bit mais significativo invertido para representar sinais negativos de forma natural.

  • As representações natural e offset têm os mesmos padrões binários, mas diferentes níveis de saída.

  • A tabela 2.3.2 mostra, por exemplo com B=4B = 4, como as palavras binárias mapeiam para níveis analógicos em cada codificação.

  • O código complemento para dois é obtido facilmente a partir da forma natural binaria, complementando os bits e somando 1 (ex: 0011 = +3 → 1101 = −3).

  • São apresentadas funções C para simular conversores DAC de  complemento para dois (usando a regra de Horner para calcular xQx_Q).


Capítulo 2 do livro Introduction to Signal Processing de Sophocles J. Orfanidis



🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

quarta-feira, 16 de abril de 2025

Resumo extraído do Capítulo 1 do livro Introduction to Signal Processing de Sophocles J. Orfanidis

Capítulo 1 – Amostragem e Reconstrução 

1.1 Introdução

O processamento digital de sinais analógicos ocorre em três etapas:

  1. Digitalização: o sinal analógico é amostrado e quantizado, processo conhecido como conversão A/D.

  2. Processamento: os sinais digitalizados são manipulados por um processador digital de sinais (DSP).

  3. Reconstrução: os sinais processados são convertidos novamente para formato analógico através de uma conversão D/A.

O DSP pode ser implementado com computadores de uso geral, microprocessadores, chips DSP dedicados ou hardware especializado. Os conceitos fundamentais de amostragem e quantização são os pilares do processamento digital e serão aprofundados nos dois primeiros capítulos.


1.2 Revisão de Sinais Analógicos

Esta secção revê conceitos fundamentais:

  • Um sinal analógico é uma função contínua no tempo, x(t)x(t).

  • O espectro de frequência é obtido através da Transformada de Fourier X(Ω)X(\Omega), onde Ω=2πf\Omega = 2\pi f.

  • A Transformada de Fourier permite representar o sinal como uma soma de sinusoides.

  • A Transformada de Laplace generaliza a de Fourier, introduzindo s=σ+jΩs = \sigma + j\Omega, útil na análise de sistemas com exponenciais.

  • O sistema linear é caracterizado por uma resposta ao impulso h(t)h(t), e a saída y(t)y(t) é dada pela convolução entre x(t)x(t) e h(t)h(t).

  • No domínio da frequência, a saída é Y(Ω)=H(Ω)X(Ω)Y(\Omega) = H(\Omega)X(\Omega), onde H(Ω)H(\Omega) é a resposta em frequência do sistema.

A filtragem permite atenuar ou realçar componentes de frequência específicas.


1.3 Teorema da Amostragem

Esta secção explora os fundamentos da amostragem:

  • A amostragem de um sinal consiste em medir o seu valor a intervalos regulares TT, com taxa de amostragem fs=1/Tf_s = 1/T.

  • A amostragem replica o espectro do sinal em múltiplos inteiros de fsf_s, o que pode levar a aliasing (sobreposição de espectros).

  • Para evitar aliasing, o Teorema da Amostragem estabelece que:

    1. O sinal deve ser limitado em banda (não conter frequências acima de fmaxf_{max}).

    2. A taxa de amostragem deve ser pelo menos o dobro da frequência máxima: fs2fmaxf_s \geq 2f_{max} (chamada taxa de Nyquist).

1.3.2 Filtros Anti-Aliasing

Antes da amostragem, é necessário aplicar um filtro passa-baixo analógico que limita o sinal à banda permitida (até fs/2f_s/2) para evitar aliasing.

1.3.3 Limitações de Hardware

O hardware impõe uma limitação superior à taxa de amostragem, pois cada amostra requer um tempo de processamento TprocT_{proc}. Assim, a taxa deve satisfazer:

2fmaxfsfproc2f_{max} \leq f_s \leq f_{proc}

1.4 Amostragem de Sinusoides

A análise da amostragem de sinais sinusoidais leva às mesmas conclusões do teorema da amostragem:

  • Um mínimo de duas amostras por ciclo é necessário para representar uma sinusoide.

  • Quando o sinal não está limitado em banda, conterá componentes de frequência infinitamente altas, impossibilitando uma amostragem correta.

  • Se violado o teorema, o processo de reconstrução poderá reconstruir uma frequência errada — fenómeno conhecido como aliasing.

O sinal reconstruído será uma versão do sinal original onde todas as frequências foram mapeadas para o intervalo de Nyquist.


1.5 Amostragem Prática e Reconstrução

1.5.1 Sampler Ideal e Reconstructor Ideal

  • Um amostrador ideal extrai o valor exato do sinal contínuo em instantes t=nTt = nT.

  • Um reconstructor ideal é um filtro passa-baixo com frequência de corte igual à frequência de Nyquist fs/2f_s/2.

  • Este reconstrutor remove as réplicas espectrais introduzidas pela amostragem e reconstrói o sinal original, se não houver aliasing.

1.5.2 Reconstrução Prática

  • Na prática, a reconstrução envolve:

    1. Um retentor de ordem zero, que mantém o valor da última amostra até à seguinte.

    2. Um filtro de suavização (low-pass) analógico que suaviza o sinal em degraus.

  • Este método introduz distorções, mas é amplamente utilizado por ser simples e eficaz em muitos casos.

1.5.3 Escolha do Filtro

  • Os filtros de reconstrução e antialiasing não podem ser ideais, mas devem atenuar suficientemente as componentes fora da banda desejada.

  • A ordem do filtro está relacionada com a rapidez de atenuação em dB por oitava:

    • Por exemplo: um filtro com atenuação de 60 dB/oct corresponde a um filtro de ordem 10 (regra: 6 dB/oct por ordem).

  • Filtros mais complexos têm melhor desempenho, mas maior custo e dificuldade de implementação analógica.


1.6 Oversampling e Decimação

Oversampling (sobreamostragem)

  • Aumentar a taxa de amostragem para além da taxa de Nyquist:

    • Vantagens:

      • Maior separação entre réplicas espectrais.

      • Permite usar filtros antialiasing com menor ordem.

      • Reduz o ruído de quantização (ver Capítulo 2).

      • Diminui a distorção por aliasing.

    • Exemplo: amostragem a 80 kHz para sinais com banda até 20 kHz.

Decimação

  • Redução controlada da taxa de amostragem:

    • Antes da redução, o sinal deve ser filtrado com um filtro digital de decimação para evitar aliasing.

    • O filtro atua sobre o sinal digital (pós-amostragem) e remove frequências acima da nova Nyquist.

  • Permite que a parte inicial do sistema opere com alta taxa de amostragem e, posteriormente, reduza a taxa para valores padrão (por exemplo, 44.1 kHz para CDs).


1.7 Interpolação Digital

Definição

  • Processo inverso da decimação: aumenta a taxa de amostragem.

  • Implica:

    1. Inserção de zeros entre as amostras (up-sampling).

    2. Aplicação de um filtro interpolador digital que suaviza o sinal e remove as imagens espectrais introduzidas pela inserção dos zeros.

Objectivos

  • Produzir um sinal com uma forma mais suave ou compatível com uma nova taxa de processamento.

  • Utilizado em:

    • Conversores digitais para analógico com oversampling.

    • Ajustes de taxas de amostragem entre sistemas com frequências diferentes.

Filtro de Interpolação

  • Deve ter corte em π/L\pi/L (onde LL é o fator de interpolação).

  • Tal como na decimação, a qualidade do filtro determina o nível de distorção.


Capítulo 1 do livro Introduction to Signal Processing de Sophocles J. Orfanidis

 


🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

quarta-feira, 26 de março de 2025

Resumo extraído do Capítulo 2 do livro "Signals and Systems" de Oppenheim e Nawab

Capítulo 2: Sistemas Lineares Invariantes no Tempo (LTI)

2.0 Introdução

Os sistemas lineares e invariantes no tempo (LTI), desempenham um papel essencial na análise de sinais e sistemas. A linearidade e a invariância no tempo são propriedades fundamentais que facilitam a modelação de processos físicos e permitem uma análise detalhada com ferramentas matemáticas como a convolução.

2.1 Sistemas LTI em Tempo Discreto: Soma de Convolução

Representação de Sinais em Tempo Discreto

A ideia principal é representar um sinal discreto como uma combinação linear de impulsos unitários deslocados. Isso permite decompor qualquer sinal x[n] na forma:

x[n]=k=x[k]δ[nk]x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]

Resposta ao Impulso e Soma de Convolução

Para sistemas lineares, a resposta a um impulso deslocado pode ser expressa em termos da resposta ao impulso unitário, h[n]. Assim, a saída y[n] de um sistema LTI pode ser obtida pela soma de convolução:

y[n]=k=x[k]h[nk]y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k]

Esta expressão implica que um sistema LTI é completamente caracterizado pela sua resposta ao impulso.

Exemplos

Vários exemplos ilustram o cálculo da convolução em tempo discreto, incluindo sinais exponenciais e funções degrau.

2.2 Sistemas LTI em Tempo Contínuo: Integral de Convolução

Representação de Sinais Contínuos

Sinais contínuos podem ser representados como uma soma de impulsos infinitesimais, levando à expressão integral:

x(t)=x(τ)δ(tτ)dτx(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau

Resposta ao Impulso e Integral de Convolução

Analogamente ao caso discreto, a saída de um sistema LTI contínuo pode ser obtida através do integral de convolução:

y(t)=x(τ)h(tτ)dτy(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau

Exemplos

São discutidos exemplos práticos de cálculo de convolução em sinais exponenciais e retangulares, demonstrando a aplicação prática do integral de convolução.

2.3 Propriedades dos Sistemas LTI

Comutatividade

A convolução é uma operação comutativa:

x[n]h[n]=h[n]x[n]x[n] * h[n] = h[n] * x[n]

Distributividade

A convolução distribui-se sobre a adição:

x[n](h1[n]+h2[n])=x[n]h1[n]+x[n]h2[n]x[n] * (h_1[n] + h_2[n]) = x[n] * h_1[n] + x[n] * h_2[n]

Associatividade

A associação de três sinais na convolução é independente da ordem:

x[n](h1[n]h2[n])=(x[n]h1[n])h2[n]x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]

Estas propriedades facilitam a análise e simplificação de circuitos e sistemas.


Capítulo 2 do livro "Signals and Systems" de Oppenheim e Nawab




🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

segunda-feira, 10 de março de 2025

Sinais e Sistemas - FEUP - exame de 24-1-2017, pag 6 de 6

Resolução das perguntas de escolha múltipla versão A.
A página 5 está aqui.

Sinais e Sistemas - FEUP - exame de 24-1-2017




Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


sexta-feira, 7 de março de 2025

Resumo extraído do Capítulo 1 do livro "Signals and Systems" de Oppenheim e Nawab

Capítulo 1: Sinais e Sistemas


1.1 Introdução aos Sinais

Os sinais são funções matemáticas que representam quantidades variáveis no tempo ou noutro domínio. Estes podem ser classificados como:

  • Sinais de tempo contínuo x(t)x: definidos para todo tR.
  • Sinais de tempo discreto x[n]: definidos apenas para valores inteiros .

Os sinais podem ainda ser categorizados de acordo com:

  • Periocidade: periódicos ou aperiódicos.
  • Determinismo: determinísticos ou aleatórios.
  • Energia e potência: sinais de energia finita ou potência finita.

1.2 Transformações no Domínio do Tempo

Os sinais podem sofrer diversas transformações no tempo, tais como:

  • Deslocamento temporal: x(tt0) representa um atraso e x(t+t0) representa um avanço, quando t0 > 0.
  • Escalonamento temporal: x(at) comprime ou expande o sinal.
  • Inversão temporal: x(treflete o sinal em torno da origem.

1.3 Sinais Exponenciais e Sinusoidais

Os sinais exponenciais e sinusoidais são fundamentais em muitas aplicações, sendo expressos como:

x(t)=Ce(at)

onde C e a podem ser números complexos. Se a for puramente imaginário (jωj), o sinal será um sinusoide:

x(t)=Acos(ωt+θ)x(t) 

Os sinais sinusoidais são essenciais porque qualquer sinal periódico pode ser expresso como uma soma de sinusoidais (série de Fourier).


1.4 Sinais de Tempo Discreto

No domínio discreto, os sinais exponenciais e sinusoidais são representados como:

x[n]=Ae(jωn)

onde ω está confinado a um intervalo [pi,pi] devido à periodicidade do domínio discreto.


1.5 Sistemas de Tempo Contínuo e Discreto

Os sistemas processam sinais e podem ser classificados como:

  • Tempo contínuo ou discreto: dependendo se as entradas e saídas são contínuas ou discretas.
  • Determinísticos ou estocásticos: dependendo da previsibilidade da resposta do sistema.
  • Causais ou não causais: um sistema é causal se a saída em um instante depender apenas de entradas presentes ou passadas.

Exemplo de sistema em tempo contínuo:

dy(t)dt+ay(t)=bx(t)

Exemplo de sistema em tempo discreto:

y[n]=0.9y[n1]+x[n]

1.6 Propriedades dos Sistemas

Os sistemas possuem diversas propriedades:

  • Linearidade: segue o princípio da sobreposição S(ax1+bx2)=aS(x1)+bS(x2)
  • Invariância no tempo: o comportamento não depende do instante em que é analisado.
  • Estabilidade: entradas limitadas resultam em saídas limitadas.
  • Causalidade: a saída depende apenas de valores presentes e passados da entrada.

signals-and-systems-Oppenheim and Nawab 2thEd Cap 1




Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


quinta-feira, 6 de março de 2025

Resolução das perguntas de escolha múltipla versão A, pag5 de 6


Sinais e Sistemas - FEUP - exame de 24-1-2017

A página 4 está aqui.


Resolução das perguntas de escolha múltipla versão A, pag5 de 6




Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


Formulário de Contacto

Nome

Email *

Mensagem *