Pesquisar neste blogue

Mostrar mensagens com a etiqueta Física A. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Física A. Mostrar todas as mensagens

sexta-feira, 11 de julho de 2025

Resumo extraído do Capítulo 33, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed

Capítulo 33 – Circuitos em corrente alternada (AC)


33.1 Fontes de Corrente Alternada

Uma fonte de corrente alternada (AC) fornece uma tensão alternada que varia sinusoidalmente com o tempo, descrita por:

Δv=ΔVmaxsin(wt)\Delta v = \Delta V_{max} \sin (vt)

onde ΔVmax\Delta V_{max} é a amplitude da tensão e wv é a frequência angular (ligada à frequência ff por w=2πfv = 2\pi f). Exemplos de fontes AC incluem geradores e osciladores eléctricos. Em casa, cada tomada serve de fonte de AC.

A tensão alternada muda de sinal ao longo de cada ciclo: positiva numa metade, negativa na outra. O resultado é que a corrente no circuito também alterna de sentido, variando sinusoidalmente.

A frequência comercial varia consoante o país; em Portugal é de 50 Hz (o que dá uma frequência angular de 314 rad/s).


33.2 Resistências num Circuito AC 

Considera-se um circuito AC simples com uma resistência ligada a uma fonte AC. Usando a lei das malhas de Kirchhoff:

ΔviRR=0\Delta v - i_R R = 0

Substituindo Δv=ΔVmaxsin(wt)\Delta v = \Delta V_{max} \sin (vt):

iR=ΔVmaxRsin(wt)=Imaxsin(wt)i_R = \frac{\Delta V_{max}}{R} \sin (vt) = I_{max} \sin (vt)

Assim, a corrente alternada numa resistência varia em fase com a tensão: ambos atingem os seus valores máximos e mínimos em simultâneo. Em gráficos de tensão e corrente versus tempo, os dois são sinusoides coincidentes.

Conceito de fase: Para resistências, corrente e tensão estão sempre em fase.

Diagramas fasoriais: Um fasor representa uma grandeza (corrente ou tensão) como um vetor rotativo cuja projeção no eixo vertical dá o valor instantâneo. Para uma resistência, os fasores de corrente e tensão estão alinhados, indicando fase igual.

Valores eficazes (rms): Em AC usa-se o valor eficaz (root-mean-square, rms) para facilitar comparações com DC:

Irms=Imax20.707ImaxI_{rms} = \frac{I_{max}}{\sqrt{2}} \approx 0.707 I_{max} ΔVrms=ΔVmax2\Delta V_{rms} = \frac{\Delta V_{max}}{\sqrt{2}}

Por exemplo, quando dizemos que uma tomada fornece 230 V AC, referimo-nos ao valor rms; o valor de pico seria cerca de 330 V.

Potência média:

Pavg=Irms2RP_{avg} = I_{rms}^2 R

As resistências dissipam potência independentemente da direção da corrente: aquecem igualmente com corrente positiva ou negativa.


33.3 Bobines num Circuito AC 

Agora considera-se um circuito AC com apenas uma bobine:

ΔvL=LdiLdt\Delta v_L = -L \frac{di_L}{dt}

Usando Δv=ΔVmaxsin(wt)\Delta v = \Delta V_{max} \sin (vt):

ΔVmaxsin(wt)=- LdiLdt\Delta V_{max} \sin (vt) = L \frac{di_L}{dt}

Integrando:

iL=ΔVmaxwLcos(wt)=ΔVmaxwLsin(wtπ2)i_L = -\frac{\Delta V_{max}}{vL} \cos (vt) = \frac{\Delta V_{max}}{vL} \sin \left(vt - \frac{\pi}{2}\right)

Resultado importante: a corrente numa bobine atrasa-se 90° em relação à tensão. Em gráficos de tempo, a tensão atinge o máximo um quarto de ciclo antes da corrente.

Diagramas fasoriais: os fasores de corrente e tensão são ortogonais (90° de diferença).

Reactância indutiva: a oposição de uma bobine à corrente AC depende da frequência:

XL=wLX_L = vL Imax=ΔVmaxXLI_{max} = \frac{\Delta V_{max}}{X_L}

Assim, para frequências mais altas, a reactância indutiva aumenta, reduzindo a corrente. Isto está de acordo com a lei de Faraday: maior variação de corrente gera uma força contra-electromotriz (emf) maior.

Valores rms:

Irms=ΔVrmsXL

33.4 Condensadores num Circuito AC 

Considera-se um circuito AC constituído apenas por um condensador de capacitância CC. Aplicando a lei das malhas de Kirchhoff:

ΔvqC=0\Delta v - \frac{q}{C} = 0

Substituindo Δv=ΔVmaxsin(wt)\Delta v = \Delta V_{max} \sin(vt):

q=CΔVmaxsin(wt)q = C \Delta V_{max} \sin(vt)

A corrente é dada por:

iC=dqdt=wCΔVmaxcos(wt)i_C = \frac{dq}{dt} = vC \Delta V_{max} \cos(vt)

Usando a identidade trigonométrica cos(wt)=sin(wt+π2)\cos(vt) = \sin\left(vt + \frac{\pi}{2}\right):

iC=wCΔVmaxsin(wt+π2)i_C = vC \Delta V_{max} \sin\left(vt + \frac{\pi}{2}\right)

Resultado importante: a corrente num condensador antecipa-se 90° em relação à tensão. Ou seja, a corrente antecipa a tensão por um quarto de ciclo.

Representação gráfica: nos gráficos de tempo, o pico da corrente ocorre antes do pico da tensão. Em pontos onde a corrente é nula, o condensador está carregado ao máximo.

Diagrama fasorial: o fasor da corrente está 90° à frente do fasor da tensão.

Reactância capacitiva: o condensador oferece oposição à corrente alternada dependente da frequência:

XC=1wC


X_C = \frac{1}{vC}
Imax=ΔVmaxXCI_{max} = \frac{\Delta V_{max}}{X_C}

Interpretação: para frequências mais altas, a reactância capacitiva diminui, permitindo mais corrente. Quando a frequência se aproxima de zero (DC), XCX_C tende para infinito, bloqueando a corrente.

Valores rms:

Irms=ΔVrmsXC


33.5 O Circuito Série RLC 

Agora estuda-se um circuito série com resistência (R), bobine (L) e condensador (C) ligados a uma fonte de tensão AC:

Δv=ΔVmaxsin(wt)\Delta v = \Delta V_{max} \sin(vt)

A corrente no circuito é comum a todos os elementos:

i=Imaxsin(wtϕ)i = I_{max} \sin(vt - \phi)

onde ϕ\phi é o ângulo de fase entre a tensão aplicada e a corrente.

Características de fase:

  • Na resistência: tensão e corrente em fase.

  • Na bobine: tensão adianta-se à corrente por 90°.

  • No condensador: tensão atrasa-se da corrente por 90°.

Tensões instantâneas:

ΔvR=ImaxRsin(wt)\Delta v_R = I_{max} R \sin(vt) ΔvL=ImaxXLcos(wt)\Delta v_L = I_{max} X_L \cos(vt) ΔvC=ImaxXCcos(wt)\Delta v_C = -I_{max} X_C \cos(vt)

Impedância (Z): combina as três componentes considerando as diferenças de fase:

Z=R2+(XLXC)2Z = \sqrt{R^2 + (X_L - X_C)^2}

onde:

XL=wL,XC=1wCX_L = vL, \quad X_C = \frac{1}{vC}

Corrente máxima:

Imax=ΔVmaxZI_{max} = \frac{\Delta V_{max}}{Z}

Ângulo de fase:

tanϕ=XLXCR\tan \phi = \frac{X_L - X_C}{R}

  • Se XL>XCX_L > X_C: circuito mais indutivo → corrente atrasa-se em relação à tensão.

  • Se XL<XCX_L < X_C: circuito mais capacitivo → corrente antecipa-se em relação à tensão.

  • Se XL=XCX_L = X_C: circuito resistivo puro, ϕ=0\phi = 0.

Diagramas fasoriais: permitem somar as tensões nos diferentes elementos considerando as suas fases relativas. A soma vetorial resulta na tensão aplicada.

Conclusão: o comportamento do circuito série RLC depende fortemente da frequência de operação devido à variação de XLX_L e XCX_C. Este circuito pode exibir ressonância (discutida mais adiante no capítulo).


33.6 Potência num Circuito AC 

A potência instantânea fornecida por uma fonte AC é:

P=iΔvP = i \Delta v

Para um circuito RLC:

P=Imaxsin(wtϕ)ΔVmaxsin(wt)P = I_{max} \sin(vt - \phi) \cdot \Delta V_{max} \sin(vt)

Usando identidades trigonométricas e calculando o valor médio ao longo de um ciclo:

Pavg=12ImaxΔVmaxcosϕP_{avg} = \frac{1}{2} I_{max} \Delta V_{max} \cos \phi

Em termos de valores eficazes (rms):

Pavg=IrmsΔVrmscosϕP_{avg} = I_{rms} \Delta V_{rms} \cos \phi

onde cosϕ\cos \phi é o factor de potência.

Interpretação:

  • cosϕ=1\cos \phi = 1: carga puramente resistiva, máxima potência transferida.

  • cosϕ=0\cos \phi = 0: carga puramente reativa (bobine ou condensador puros), potência média zero.

Explicação física:

  • Numa resistência, a energia elétrica converte-se em calor → há consumo real de potência.

  • Numa bobine ou condensador ideais, a energia é armazenada e devolvida ao circuito → não há dissipação líquida de potência.

Factor de potência na prática: Em instalações industriais com cargas indutivas significativas (motores, transformadores), usa-se a compensação capacitiva para melhorar cosϕ\cos \phi, reduzindo perdas e aumentando a eficiência da rede.

Expressão alternativa para potência média:

Pavg=Irms2RP_{avg} = I_{rms}^2 R

Conclusão: a potência dissipada num circuito AC depende não só da corrente e tensão rms, mas também do factor de potência, que quantifica o desfasamento entre corrente e tensão.


33.7 Ressonância num Circuito Série RLC 

Um circuito série RLC comporta-se como um oscilador eléctrico. Quando a frequência da fonte coincide com a frequência natural do sistema, ocorre ressonância.

Impedância em AC:

Z=R2+(XLXC)2Z = \sqrt{R^2 + (X_L - X_C)^2}

onde:

XL=wLeXC=1wC.X_L = vL \quad \text{e} \quad X_C = \frac{1}{vC}.

A corrente eficaz (rms) é:

Irms=ΔVrmsZ.I_{rms} = \frac{\Delta V_{rms}}{Z}.

Na ressonância, XL=XCX_L = X_C, logo:

w0L=1w0Cw0=1LC.v_0 L = \frac{1}{v_0 C} \quad \Rightarrow \quad v_0 = \frac{1}{\sqrt{LC}}.

Propriedades da ressonância:

  • A impedância atinge o mínimo Z=RZ = R.

  • A corrente rms atinge o máximo:

Irms=ΔVrmsR.I_{rms} = \frac{\Delta V_{rms}}{R}.

  • Corrente e tensão estão em fase (ângulo de fase ϕ=0\phi = 0).

Curva de ressonância:

  • A largura da curva (em frequência) está relacionada com a resistência.

  • Quanto menor a resistência, mais estreita e alta é a curva de corrente em função da frequência.

Fator de qualidade (Q):

Q=w0Δv=w0LRQ = \frac{v_0}{\Delta v} = \frac{v_0 L}{R}

onde Δv\Delta v é a largura da curva a meia-potência (half-power points).

Aplicações práticas:

  • Circuitos de sintonia em rádios.

  • Seleção de uma frequência específica num sinal complexo.

  • Em rádios, o condensador variável permite ajustar a frequência de ressonância para captar diferentes estações.

Ideia central: A ressonância permite maximizar a resposta de corrente para uma frequência específica e filtrar todas as outras.


33.8 O Transformador e a Transmissão de Energia 

Os transformadores são dispositivos que mudam a tensão e a corrente alternada sem alterar significativamente a potência. São essenciais para a transmissão eficiente de energia elétrica a longas distâncias.

Estrutura:

  • Dois enrolamentos (primário e secundário) num núcleo de ferro.

  • O núcleo guia o fluxo magnético, garantindo acoplamento entre os enrolamentos.

Lei de Faraday:

Δv1=N1dΦBdt,Δv2=N2dΦBdt.\Delta v_1 = -N_1 \frac{d\Phi_B}{dt}, \quad \Delta v_2 = -N_2 \frac{d\Phi_B}{dt}.

Assumindo fluxo comum:

Δv2Δv1=N2N1.\frac{\Delta v_2}{\Delta v_1} = \frac{N_2}{N_1}.

Dois tipos principais:

  • Elevador de tensão: N2>N1N_2 > N_1, aumenta a tensão.

  • Redutor de tensão: N2<N1N_2 < N_1, reduz a tensão.

Conservação de potência (ideal):

I1Δv1=I2Δv2.I_1 \Delta v_1 = I_2 \Delta v_2.

Equivalência de resistências vistas do primário:

Req=(N1N2)2RL.R_{eq} = \left(\frac{N_1}{N_2}\right)^2 R_L.

Permite ajustar resistências para maximizar transferência de potência.

Transmissão de energia elétrica:

  • Alta tensão → Baixa corrente → Menores perdas I2RI^2 R.

  • Linhas de transmissão podem operar a centenas de quilovolts.

  • Subestações reduzem gradualmente a tensão para níveis seguros e úteis (ex.: 230 kV → 20 kV → 400 V → 230 V).

Eficiência: Transformadores reais têm eficácias elevadas (90%–99%).

Exemplos quotidianos:

  • Adaptadores de parede para aparelhos electrónicos.

  • Transformadores em redes de distribuição eléctrica.


33.9 Rectificadores e Filtros 

Muitos dispositivos electrónicos precisam de corrente contínua (DC) apesar de a rede fornecer corrente alternada (AC). Para isso usam-se rectificadores e filtros.

Rectificação:

  • Processo de conversão de AC em DC.

  • Principal elemento: díodo, que só conduz corrente num sentido.

  • Circuito típico: rectificador de meia-onda com díodo em série com a carga.

  • Resultado: corrente pulsante apenas numa direcção.

Filtro com condensador:

  • Adiciona-se um condensador em paralelo com a carga.

  • Suaviza a variação da tensão e corrente.

  • O condensador carrega-se quando a tensão sobe e descarrega-se lentamente, mantendo corrente na carga mesmo quando a entrada AC desce.

Problema do ripple:

  • Mesmo após filtragem, há uma pequena componente AC (ripple).

  • É importante reduzir o ripple para níveis insignificantes, especialmente em áudio para evitar hums (ex.: 50/60 Hz).

Filtros RC:

  • Circuitos específicos que deixam passar ou bloqueiam certas frequências.

  • Exemplo: filtro passa-alto RC.

    • Baixas frequências → tensão de saída muito menor que a entrada.

    • Altas frequências → saída ≈ entrada.

Aplicação: eliminar componentes de baixa frequência indesejadas e permitir sinais úteis de alta frequência.


33.10 Resumo

  • A corrente alternada (AC) varia sinusoidalmente, permitindo transporte eficiente de energia.

  • Em resistências, corrente e tensão estão em fase.

  • Em bobines, a corrente atrasa-se 90° em relação à tensão.

  • Em condensadores, a corrente antecipa-se 90° em relação à tensão.

  • A impedância combina resistência e reactâncias indutiva e capacitiva, dependendo da frequência.

  • Ressonância em circuitos série RLC ocorre quando XL=XCX_L = X_C, minimizando a impedância e maximizando a corrente.

  • Transformadores permitem alterar níveis de tensão e corrente para transmissão eficiente de energia.

  • Rectificadores convertem AC em DC, com filtros (normalmente com condensadores) para suavizar a saída.



Capa do Capítulo 33, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed



🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

terça-feira, 8 de julho de 2025

Resumo extraído do Capítulo 32, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed

Capítulo 32 – Indutância


32.1 Auto-indução e Indutância

Quando fechamos um circuito com uma fonte de força electromotriz (f.e.m.), um interruptor e uma resistência, a corrente não atinge imediatamente o valor final dado por ε/R. À medida que a corrente aumenta, o campo magnético gerado pela corrente cria um fluxo magnético através da área do circuito. Segundo a Lei de Faraday, esta variação de fluxo induz uma f.e.m. no próprio circuito.

A f.e.m. induzida tem sinal oposto à f.e.m. da bateria — por isso chama-se força contra-electromotriz — e resiste ao aumento da corrente, fazendo com que esta cresça de forma gradual. Este fenómeno chama-se auto-indução, porque a variação de fluxo que causa a f.e.m. surge do próprio circuito.

A f.e.m. auto-induzida (eL) é proporcional à taxa de variação temporal da corrente:

eL=Ldidte_L = -L \frac{di}{dt}

onde L é a indutância, uma constante que depende da geometria do circuito (número de espiras, área, comprimento, etc.). Para um enrolamento de N espiras, com fluxo magnético Φ_B através de cada uma:

L=NΦBiL = \frac{N \Phi_B}{i}

A indutância mede a oposição a variações de corrente, de forma semelhante ao modo como a resistência mede a oposição ao fluxo de corrente. A unidade SI de indutância é o henry (H), definido como 1 V·s/A.

O exemplo clássico é o solenoide de N espiras, comprimento ℓ (muito maior que o raio) e área A:

L=μ0N2AL = \mu_0 \frac{N^2 A}{\ell}

Este exemplo mostra que L depende fortemente do número de espiras ao quadrado e da geometria do enrolamento. A analogia com a capacitância (dependência da geometria das placas) e com a resistência (dependência do comprimento e área do condutor) é salientada.


32.2 Circuitos RL

Um circuito RL contém uma resistência e uma bobine (indutor) ligadas em série a uma fonte de f.e.m. A presença de uma bobine impede mudanças instantâneas na corrente. Quando se fecha o interruptor, a corrente começa em zero e cresce de forma exponencial, pois a força contra-electromotriz da bobine opõe-se ao aumento.

Aplicando a lei das malhas de Kirchhoff:

εiRLdidt=0\varepsilon - iR - L \frac{di}{dt} = 0

Resolvendo a equação diferencial obtém-se:

i(t)=εR(1et/τ)i(t) = \frac{\varepsilon}{R} \left(1 - e^{-t/\tau}\right)

com a constante de tempo:

τ=LR\tau = \frac{L}{R}

Esta constante representa o tempo necessário para a corrente atingir 63,2% do valor final (ε/R). Quanto maior a indutância L ou menor a resistência R, mais lenta será a resposta do circuito.

Quando a fonte é desligada (substituída por um curto-circuito), o circuito passa a ter apenas a resistência e a bobine. A corrente decresce exponencialmente:

i(t)=Iiet/τi(t) = I_i e^{-t/\tau}

A bobine impede que a corrente caia instantaneamente a zero. A força contra-electromotriz gerada tenta manter a corrente, libertando a energia armazenada no campo magnético.

Em resumo, a bobine «suaviza» as variações de corrente, criando uma resposta "preguiçosa" ou atrasada às mudanças de tensão.


32.3 Energia num Campo Magnético

Quando uma bobine conduz corrente, armazena energia no seu campo magnético. Parte da energia fornecida pela fonte é dissipada em calor na resistência, mas parte é armazenada como energia magnética na bobine.

A taxa de fornecimento de energia pela fonte é:

εi=iR+Lididt\varepsilon i = iR + L i \frac{di}{dt}

O termo iRiR é a potência dissipada como calor. Já LididtL i \frac{di}{dt} corresponde à taxa de armazenamento de energia na bobine. Integrando, obtém-se a energia total armazenada:

UB=12Li2U_B = \frac{1}{2} L i^2

Esta forma é análoga à energia armazenada num condensador:

UE=12CV2U_E = \frac{1}{2} C V^2

Para um solenoide (ou outra distribuição de campo magnético conhecido), podemos calcular a densidade de energia magnética (energia por unidade de volume):

uB=B22μ0u_B = \frac{B^2}{2\mu_0}

Este resultado mostra que a energia armazenada no campo magnético depende do quadrado da intensidade do campo, de forma semelhante à densidade de energia num campo eléctrico.

Um exemplo trabalhado no texto demonstra que quando a bobine descarrega (por exemplo, num circuito RL isolado), toda a energia inicialmente armazenada no campo magnético se converte em energia interna (calor) na resistência.


32.4 Indutância Mútua

Nesta secção, introduz-se o conceito de indutância mútua. Quando há dois circuitos próximos, a corrente variável num deles pode induzir uma f.e.m. no outro, porque o campo magnético de um atravessa a área do outro.

Imagina duas bobinas próximas (bobina 1 e bobina 2):

  • A corrente i₁ em 1 cria um campo magnético. Parte desse campo atravessa a área de 2, gerando fluxo magnético Φ₁₂ em 2.

  • Se i₁ varia no tempo, Φ₁₂ varia, induzindo uma f.e.m. em 2.

Define-se indutância mútua M₁₂ como:

M12=N2Φ12i1M_{12} = \frac{N_2 \Phi_{12}}{i_1}

onde N₂ é o número de espiras da bobina 2.

A f.e.m. induzida em 2 devido a i₁ é:

ε2=M12di1dt\varepsilon_2 = -M_{12} \frac{di_1}{dt}

Analogamente, se i₂ em 2 variar, induz uma f.e.m. em 1:

ε1=M21di2dt\varepsilon_1 = -M_{21} \frac{di_2}{dt}

Pode-se demonstrar que M₁₂ = M₂₁ = M, porque depende apenas da geometria mútua dos circuitos e das suas orientações.

A unidade de indutância mútua é o henry (H), como na auto-indução.

Exemplo prático: carregadores sem fios. Uma bobina na base (primária) cria um campo magnético variável, induzindo corrente na bobina do aparelho (secundária).


32.5 Oscilações num Circuito LC

Nesta secção estuda-se o circuito LC ideal: um condensador ligado a uma bobine, sem resistência e sem radiação electromagnética.

  • Supondo o condensador inicialmente carregado (carga Q_max), quando o circuito se fecha, a energia armazenada no campo eléctrico do condensador começa a transferir-se para a bobine.

  • À medida que o condensador se descarrega, a corrente aumenta, armazenando energia no campo magnético da bobine.

  • Quando o condensador está totalmente descarregado, a energia está toda na bobine.

  • A corrente continua, recarregando o condensador com polaridade oposta.

Este processo repete-se, criando oscilações electromagnéticas entre energia eléctrica (condensador) e magnética (bobine).

Matematicamente:

  • A equação diferencial do circuito é:

d2qdt2+1LCq=0\frac{d^2q}{dt^2} + \frac{1}{LC} q = 0

  • Solução:

q(t)=Qmaxcos(ωt+ϕ)q(t) = Q_{\text{max}} \cos(\omega t + \phi)

onde

ω=1LC\omega = \frac{1}{\sqrt{LC}}

é a frequência angular natural das oscilações.

  • A corrente é:

i(t)=dqdt=ωQmaxsin(ωt+ϕ)i(t) = \frac{dq}{dt} = -\omega Q_{\text{max}} \sin(\omega t + \phi)

Observa-se que carga e corrente estão desfasadas de 90°: quando a carga é máxima, a corrente é zero e vice-versa.

A energia total do circuito (conservada no ideal):

U=12CV2+12Li2U = \frac{1}{2} C V^2 + \frac{1}{2} L i^2

oscila entre o campo eléctrico do condensador e o campo magnético da bobine, mas permanece constante no tempo se não houver perdas.

Analogia mecânica: é como um sistema massa–mola sem atrito, em oscilação harmónica simples.


32.6 O Circuito RLC

Aqui estuda-se o circuito RLC em série (resistência R, bobine L e condensador C).

Ao contrário do LC ideal:

  • A resistência provoca dissipação de energia.

  • A energia armazenada no campo eléctrico do condensador e no campo magnético da bobine diminui com o tempo, transformando-se em energia interna (calor) na resistência.

A equação diferencial que descreve o circuito é:

Ld2qdt2+Rdqdt+qC=0L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{C} = 0

Esta é matematicamente equivalente à equação de movimento de um oscilador harmónico amortecido:

md2xdt2+bdxdt+kx=0m \frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = 0

onde:

  • q ↔ posição x

  • i ↔ velocidade dx/dt

  • L ↔ massa m

  • R ↔ coeficiente de atrito b

  • 1/C ↔ constante elástica k

Solução para amortecimento fraco (R pequeno):

q(t)=QmaxeRt/2Lcos(vdt)q(t) = Q_{\text{max}} e^{-Rt/2L} \cos(v_d t)

com

vd=1LC(R2L)2v_d = \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}

 As oscilações são amortecidas: a amplitude decai exponencialmente com o tempo.

 Para valores altos de R, as oscilações podem desaparecer totalmente (sobreamortecimento ou amortecimento crítico).

O comportamento geral do circuito RLC inclui:

  • Oscilações amortecidas (R pequeno).

  • Resposta crítica ou sobreamortecida (R grande).


32.7 Resumo

  • A auto-indução L mede a oposição de um circuito a variações de corrente:

eL=Ldidte_L = -L \frac{di}{dt}

  • A energia armazenada num campo magnético é:

UB=12Li2U_B = \frac{1}{2} L i^2

  • A densidade de energia magnética (no campo B):

uB=B22μ0u_B = \frac{B^2}{2\mu_0}

  • Indutância mútua M relaciona as f.e.m. induzidas entre dois circuitos:

ε2=Mdi1dt,ε1=Mdi2dt\varepsilon_2 = -M \frac{di_1}{dt}, \quad \varepsilon_1 = -M \frac{di_2}{dt}

  • Circuito RL: apresenta resposta retardada à variação de corrente, com constante de tempo τ = L/R.

  • Circuito LC: oscilações sinusoidais ideais, sem perdas:

ω=1LC\omega = \frac{1}{\sqrt{LC}}

  • Circuito RLC: oscilações amortecidas, com energia dissipada na resistência.


Capa do Capítulo 31, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed




🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

sábado, 5 de julho de 2025

Resumo extraído do Capítulo 31, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed

Capítulo 31 – Lei de Faraday



31.1 – Lei da Indução de Faraday

Esta secção introduz a descoberta de Faraday de que um campo magnético variável no tempo pode induzir uma corrente eléctrica num circuito. Experiências simples com uma espira de fio e um íman mostram que mover o íman em relação à espira gera uma corrente detectável. A corrente só aparece quando há variação do fluxo magnético (e não com campos magnéticos constantes), sendo chamada de corrente induzida, e surge devido a uma força electromotriz (fem) induzida.

A lei de Faraday quantifica este fenómeno:

  • Para uma espira:
    E=dΦBdt\mathcal{E} = -\dfrac{d\Phi_B}{dt}

  • Para uma bobina com NN espiras:
    E=NdΦBdt\mathcal{E} = -N\dfrac{d\Phi_B}{dt}

O fluxo magnético ΦB\Phi_B é dado por:

ΦB=BA=BAcosθ\Phi_B = \vec{B} \cdot \vec{A} = BA\cos\theta

e pode variar:

  • pela mudança do campo magnético BB,

  • pela mudança da área da espira,

  • pela mudança da orientação entre o campo e a espira.

Apresentam-se aplicações práticas como o interruptor de circuito por falha à terra (GFCI) e as bobinas de captação de guitarras eléctricas, que funcionam com base na indução de fem por variação de fluxo magnético.


31.2 – Fem de Movimento 

Esta secção analisa a indução de fem em condutores em movimento dentro de campos magnéticos constantes. Um condutor rectilíneo que se move perpendicularmente a um campo magnético sofre uma separação de cargas devido à força magnética sobre os electrões, criando um campo eléctrico interno e uma diferença de potencial:

ΔV=Bv\Delta V = B\ell v

Quando este condutor faz parte de um circuito fechado (por exemplo, uma barra a deslizar sobre calhas condutoras), há corrente induzida e podem aplicar-se as leis de Faraday e da conservação de energia:

  • A fem induzida é:

    E=Bv\mathcal{E} = -B\ell v
  • A corrente induzida:

    I=BvRI = \dfrac{B\ell v}{R}

A força necessária para manter a barra a mover-se com velocidade constante deve compensar a força magnética (contrária ao movimento), garantindo conservação da energia:

P=Faplicadav=E2RP = F_{\text{aplicada}} v = \dfrac{\mathcal{E}^2}{R}

Exemplos analisados incluem a barra deslizante e uma barra rotativa num campo magnético, mostrando como a velocidade angular ou linear influencia a fem gerada.


31.3 – Lei de Lenz

A Lei de Lenz dá ao sinal negativo da Lei de Faraday um significado físico: a corrente induzida flui de forma a opor-se à variação do fluxo magnético que a causou. Isto está intimamente ligado ao princípio da conservação da energia.

  • Se o fluxo aumenta, a corrente induzida cria um campo que se opõe ao aumento.

  • Se o fluxo diminui, a corrente induzida cria um campo que tenta manter o fluxo original.

Exemplos incluem:

  • A barra a mover-se numa calha com campo constante: se o fluxo aumenta, a corrente opõe-se, gerando uma força contrária ao movimento.

  • Um íman a aproximar-se de uma espira: o sentido da corrente depende de se o fluxo está a aumentar ou diminuir.

Apresenta-se também o paradoxo energético: se a corrente não se opusesse à variação de fluxo, poder-se-ia criar energia a partir do nada, violando a conservação da energia. Assim, a lei de Lenz garante que a energia seja conservada.


31.4 – Fem Induzida e Campos Eléctricos

Nesta secção, explora-se como um campo magnético variável no tempo induz um campo eléctrico, mesmo na ausência de um fio condutor. A corrente induzida numa espira metálica é causada por um campo eléctrico induzido que age sobre as cargas no fio. Este campo não é conservativo (ao contrário do campo electrostático), pois o trabalho realizado ao mover uma carga à volta de um percurso fechado não é zero.

A indução do campo eléctrico é consequência directa da Lei de Faraday. Considerando uma espira circular de raio rr, quando o fluxo magnético varia com o tempo, surge um campo eléctrico E\vec{E}, tangente à espira, tal que:

Eds=dΦBdt\oint \vec{E} \cdot d\vec{s} = -\dfrac{d\Phi_B}{dt}

O campo eléctrico induzido depende da variação temporal do fluxo e não da presença de cargas. Esta propriedade é fundamental para a compreensão das ondas electromagnéticas, onde campos eléctricos e magnéticos se induzem mutuamente.


31.5 – Geradores e Motores

Aqui são descritos os princípios de funcionamento dos geradores e motores eléctricos, ambos baseados na Lei de Faraday.

  • Geradores de corrente alternada (AC): um laço de fio é feito rodar num campo magnético, o que provoca uma variação periódica do fluxo e, consequentemente, uma fem sinusoidal:

    E=NBAvsin(ωt)\mathcal{E} = NBAv \sin(\omega t)
  • Geradores de corrente contínua (DC): usam um comutador que inverte as ligações a cada meia rotação, de forma a manter a polaridade constante, embora a tensão varie em valor.

Os motores eléctricos funcionam de forma inversa: recebem energia eléctrica e convertem-na em trabalho mecânico. À medida que o motor acelera, gera uma força contra-electromotriz que reduz a corrente de entrada.

Exemplo aplicado: quando um motor é bloqueado (por exemplo, numa serra), a corrente aumenta significativamente, o que pode danificar o equipamento devido ao aquecimento excessivo.


31.6 – Correntes de Foucault 

As correntes de Foucault são correntes circulares induzidas em massas metálicas (não em fios) em movimento através de campos magnéticos. Estas correntes criam campos magnéticos opostos à variação que as gerou, de acordo com a Lei de Lenz.

Exemplo clássico: uma placa metálica a oscilar entre os polos de um íman. As correntes de Foucault geram forças magnéticas que travam o movimento, levando eventualmente à paragem. Se a placa tiver cortes ou ranhuras, estas correntes são suprimidas, reduzindo o efeito de travagem.

Aplicações:

  • Travões electromagnéticos em comboios e metros.

  • Dispositivos de segurança (ex. serras) que usam estas correntes para parar rapidamente peças móveis.

  • Para reduzir perdas energéticas (aquecimento), as peças condutoras em transformadores e motores são laminadas, ou seja, feitas em camadas finas separadas por materiais isolantes.


Resumo

  • A Lei de Faraday estabelece que a fem induzida é proporcional à variação temporal do fluxo magnético:

    E=dΦBdt\mathcal{E} = -\dfrac{d\Phi_B}{dt}
  • A Lei de Lenz indica que a corrente induzida opõe-se à causa que a gera, garantindo a conservação da energia.

  • Um campo magnético variável no tempo pode induzir um campo eléctrico não conservativo.

  • A fem de movimento é induzida quando um condutor se move num campo magnético:

    E=Bv\mathcal{E} = B\ell v
  • Geradores e motores baseiam-se na variação do fluxo magnético e no aproveitamento da energia eléctrica e mecânica.

  • As correntes de Foucault são efeitos secundários importantes, podendo ser úteis (travagem) ou indesejáveis (perdas energéticas).





🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

sexta-feira, 23 de maio de 2025

Resumo extraído do Capítulo 30, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed

Capítulo 30 – Fontes de Campo Magnético


30.1 – A Lei de Biot–Savart

Esta secção introduz a lei de Biot–Savart, que permite calcular o campo magnético produzido por um elemento de corrente. Baseia-se em observações experimentais feitas por Biot e Savart em 1820:

  • O campo magnético elementar dBd\vec{B} gerado por um segmento de fio dsd\vec{s} com corrente II é:

    • Perpendicular tanto a dsd\vec{s} como ao vector unitário r^\hat{r}, que aponta do elemento para o ponto de observação.

    • Proporcional a II, ao comprimento do elemento dsds e ao seno do ângulo entre dsd\vec{s} e r^\hat{r}.

    • Inversamente proporcional ao quadrado da distância r2r^2.

A expressão matemática é:

dB=μ04πIds×r^r2d\vec{B} = \frac{\mu_0}{4\pi} \frac{I\, d\vec{s} \times \hat{r}}{r^2}

com μ0=4π×107T.m/A\mu_0 = 4\pi \times 10^{-7} \, \text{T·m/A} (permeabilidade do vácuo).

Para obter o campo total B\vec{B}, integra-se sobre toda a distribuição de corrente:

B=μ0I4πds×r^r2\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{s} \times \hat{r}}{r^2}

Exemplos importantes:

  • Fio rectilíneo infinito: resulta num campo B=μ0I2πaB = \frac{\mu_0 I}{2\pi a}, com aa a distância ao fio.

  • Segmento de fio curvo (arco): campo no centro B=μ0Iθ4πaB = \frac{\mu_0 I \theta}{4\pi a}.

  • Espira circular: no eixo da espira o campo é Bx=μ0Ia22(a2+x2)3/2B_x = \frac{\mu_0 I a^2}{2(a^2 + x^2)^{3/2}}.


30.2 – Força Magnética entre Dois Condutores Paralelos

Esta secção mostra que dois condutores paralelos com corrente exercem força um sobre o outro devido aos campos magnéticos que cada um gera:

  • O campo criado por um fio rectilíneo é:

B=μ0I2πaB = \frac{\mu_0 I}{2\pi a}
  • A força magnética por unidade de comprimento sobre o segundo fio (separado por uma distância aa) é:

FB=μ0I1I22πa\frac{F_B}{\ell} = \frac{\mu_0 I_1 I_2}{2\pi a}

Conclusões importantes:

  • Correntes no mesmo sentido → força atractiva.

  • Correntes em sentidos opostos → força repulsiva.

Esta interacção é a base da definição do ampere: duas correntes de 1 A em fios paralelos separados por 1 metro exercem uma força de 2×107N/m2 \times 10^{-7} \, \text{N/m}.

Exemplo 30.4: determina o valor de corrente necessário nos fios do solo para levitar um terceiro fio (com corrente oposta) através do equilíbrio entre força magnética e peso.


30.3 – Lei de Ampère

A Lei de Ampère fornece uma forma alternativa à de Biot–Savart para calcular o campo magnético em casos com elevada simetria:

Bds=μ0Ienc\oint \vec{B} \cdot d\vec{s} = \mu_0 I_{\text{enc}}

Esta equação afirma que a integral de linha do campo magnético B\vec{B} ao longo de um caminho fechado é proporcional à corrente total IencI_{\text{enc}} que atravessa a superfície delimitada por esse caminho.

Aplicações típicas:

  • Fio rectilíneo longo: permite derivar novamente B=μ0I2πrB = \frac{\mu_0 I}{2\pi r}.

  • Fios com corrente uniforme: campo interno varia com rr (proporcional), campo externo varia como 1/r1/r.

  • Toroides: B=μ0NI2πrB = \frac{\mu_0 N I}{2\pi r} dentro do toróide, e zero fora.

  • Solenoide ideal: campo uniforme no interior, dado por:

B=μ0nIB = \mu_0 n I

onde n=N/n = N/\ell é o número de espiras por unidade de comprimento.



30.4 – O Campo Magnético de um Solenóide

Um solenóide é um fio enrolado em forma de hélice, normalmente com muitas espiras, por onde circula uma corrente. Esta configuração produz um campo magnético quase uniforme no seu interior.

Características do campo magnético:

  • As linhas de campo são paralelas e densamente espaçadas no interior → campo forte e quase uniforme.

  • No exterior, o campo é fraco e disperso, semelhante ao de um íman de barra.

Campo magnético de um solenóide ideal:

  • Num solenóide longo, com espiras apertadas, o campo interior é:

B=μ0nIB = \mu_0 n I

onde:

  • μ0\mu_0 é a permeabilidade do vazio,

  • nn é o número de espiras por unidade de comprimento (n=N/n = N/\ell),

  • II é a corrente no solenóide.

Observações:

  • Esta fórmula é válida no centro do solenóide (longe das extremidades).

  • À medida que o solenóide se torna mais comprido, o campo no interior torna-se mais uniforme e o campo exterior tende para zero.


30.5 – A Lei de Gauss para o Eletromagnetismo

Esta secção introduz a lei de Gauss para o Eletromagnetismo, análoga à lei de Gauss para o campo eléctrico, mas com uma diferença fundamental:

ΦB=BdA=0\Phi_B = \oint \vec{B} \cdot d\vec{A} = 0

Isto significa que o fluxo magnético total através de uma superfície fechada é sempre zero.

Implicações:

  • As linhas de campo magnético não têm princípio nem fim, formando laços fechados.

  • Isto reflete o facto de não existirem monopólos magnéticos (ou seja, nunca foram observadas cargas magnéticas isoladas).

  • As linhas de campo que entram numa superfície fechada são sempre equilibradas pelas que saem.


30.6 – Magnetismo na Matéria

Nesta secção explora-se a origem do magnetismo nos materiais, com base nos momentos magnéticos atómicos, que resultam:

  1. Do movimento orbital dos electrões.

  2. Do spin intrínseco dos electrões (propriedade quântica).

Momento Magnético Orbital

  • Um electrão em órbita comporta-se como uma espira de corrente.

  • O momento magnético associado é proporcional ao momento angular orbital:

m=e2meL\vec{m} = \frac{e}{2m_e} \vec{L}

mas com sentido oposto ao de L\vec{L} devido à carga negativa do electrão.

Momento Magnético de Spin

  • Mesmo sem se mover em órbita, o electrão possui um momento magnético devido ao seu spin.

  • Este é dado por:

μspin=e2me=μB\mu_{\text{spin}} = \frac{e \hbar}{2m_e} = \mu_B

onde μB\mu_B é o magnetão de Bohr.

Comportamento dos materiais magnéticos

Os materiais classificam-se segundo a resposta ao campo magnético:

  1. Ferromagnéticos:

    • Materiais como o ferro e o níquel têm domínios magnéticos onde os momentos estão alinhados.

    • Em ausência de campo externo, os domínios estão desordenados → o material não está magnetizado.

    • Com campo externo, os domínios alinham-se → o material fica magnetizado permanentemente.

    • Acima da temperatura de Curie, perdem o ferromagnetismo e tornam-se paramagnéticos.

  2. Paramagnéticos:

    • Átomos com momentos magnéticos permanentes, mas sem interação forte entre si.

    • Em campo externo, os momentos tendem a alinhar-se, mas o movimento térmico dificulta este alinhamento → magnetização fraca e temporária.

  3. Diamagnéticos:

    • Ocorre em todos os materiais, mas é geralmente fraco.

    • Um campo externo induz correntes atómicas que criam um campo oposto ao campo aplicado → efeito repulsivo.

    • Em materiais supercondutores, ocorre o efeito de Meissner, onde o campo magnético é completamente expulso do interior do material.


Resumo

O capítulo aborda as fontes dos campos magnéticos, com foco nos seguintes pontos principais:

  • A lei de Biot–Savart permite calcular o campo magnético gerado por elementos de corrente.

  • Dois condutores paralelos com corrente exercem forças magnéticas entre si, fundamento para a definição do ampere.

  • A lei de Ampère fornece uma forma simplificada de calcular o campo magnético em geometrias simétricas.

  • Em configurações especiais como solenóides e toroides, os campos magnéticos podem ser intensos e previsíveis.

  • A lei de Gauss para o magnetismo mostra que não existem monopólos magnéticos: o fluxo magnético através de qualquer superfície fechada é zero.

  • O magnetismo na matéria tem origem em momentos magnéticos atómicos (orbitais e de spin), levando a diferentes tipos de comportamento: ferromagnetismo, paramagnetismo e diamagnetismo.



Capa do Capítulo 30, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed


🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

Formulário de Contacto

Nome

Email *

Mensagem *