Pesquisar neste blogue

Mostrar mensagens com a etiqueta Corrente alternada. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Corrente alternada. Mostrar todas as mensagens

sexta-feira, 11 de julho de 2025

Resumo extraído do Capítulo 33, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed

Capítulo 33 – Circuitos em corrente alternada (AC)


33.1 Fontes de Corrente Alternada

Uma fonte de corrente alternada (AC) fornece uma tensão alternada que varia sinusoidalmente com o tempo, descrita por:

Δv=ΔVmaxsin(wt)\Delta v = \Delta V_{max} \sin (vt)

onde ΔVmax\Delta V_{max} é a amplitude da tensão e wv é a frequência angular (ligada à frequência ff por w=2πfv = 2\pi f). Exemplos de fontes AC incluem geradores e osciladores eléctricos. Em casa, cada tomada serve de fonte de AC.

A tensão alternada muda de sinal ao longo de cada ciclo: positiva numa metade, negativa na outra. O resultado é que a corrente no circuito também alterna de sentido, variando sinusoidalmente.

A frequência comercial varia consoante o país; em Portugal é de 50 Hz (o que dá uma frequência angular de 314 rad/s).


33.2 Resistências num Circuito AC 

Considera-se um circuito AC simples com uma resistência ligada a uma fonte AC. Usando a lei das malhas de Kirchhoff:

ΔviRR=0\Delta v - i_R R = 0

Substituindo Δv=ΔVmaxsin(wt)\Delta v = \Delta V_{max} \sin (vt):

iR=ΔVmaxRsin(wt)=Imaxsin(wt)i_R = \frac{\Delta V_{max}}{R} \sin (vt) = I_{max} \sin (vt)

Assim, a corrente alternada numa resistência varia em fase com a tensão: ambos atingem os seus valores máximos e mínimos em simultâneo. Em gráficos de tensão e corrente versus tempo, os dois são sinusoides coincidentes.

Conceito de fase: Para resistências, corrente e tensão estão sempre em fase.

Diagramas fasoriais: Um fasor representa uma grandeza (corrente ou tensão) como um vetor rotativo cuja projeção no eixo vertical dá o valor instantâneo. Para uma resistência, os fasores de corrente e tensão estão alinhados, indicando fase igual.

Valores eficazes (rms): Em AC usa-se o valor eficaz (root-mean-square, rms) para facilitar comparações com DC:

Irms=Imax20.707ImaxI_{rms} = \frac{I_{max}}{\sqrt{2}} \approx 0.707 I_{max} ΔVrms=ΔVmax2\Delta V_{rms} = \frac{\Delta V_{max}}{\sqrt{2}}

Por exemplo, quando dizemos que uma tomada fornece 230 V AC, referimo-nos ao valor rms; o valor de pico seria cerca de 330 V.

Potência média:

Pavg=Irms2RP_{avg} = I_{rms}^2 R

As resistências dissipam potência independentemente da direção da corrente: aquecem igualmente com corrente positiva ou negativa.


33.3 Bobines num Circuito AC 

Agora considera-se um circuito AC com apenas uma bobine:

ΔvL=LdiLdt\Delta v_L = -L \frac{di_L}{dt}

Usando Δv=ΔVmaxsin(wt)\Delta v = \Delta V_{max} \sin (vt):

ΔVmaxsin(wt)=- LdiLdt\Delta V_{max} \sin (vt) = L \frac{di_L}{dt}

Integrando:

iL=ΔVmaxwLcos(wt)=ΔVmaxwLsin(wtπ2)i_L = -\frac{\Delta V_{max}}{vL} \cos (vt) = \frac{\Delta V_{max}}{vL} \sin \left(vt - \frac{\pi}{2}\right)

Resultado importante: a corrente numa bobine atrasa-se 90° em relação à tensão. Em gráficos de tempo, a tensão atinge o máximo um quarto de ciclo antes da corrente.

Diagramas fasoriais: os fasores de corrente e tensão são ortogonais (90° de diferença).

Reactância indutiva: a oposição de uma bobine à corrente AC depende da frequência:

XL=wLX_L = vL Imax=ΔVmaxXLI_{max} = \frac{\Delta V_{max}}{X_L}

Assim, para frequências mais altas, a reactância indutiva aumenta, reduzindo a corrente. Isto está de acordo com a lei de Faraday: maior variação de corrente gera uma força contra-electromotriz (emf) maior.

Valores rms:

Irms=ΔVrmsXL

33.4 Condensadores num Circuito AC 

Considera-se um circuito AC constituído apenas por um condensador de capacitância CC. Aplicando a lei das malhas de Kirchhoff:

ΔvqC=0\Delta v - \frac{q}{C} = 0

Substituindo Δv=ΔVmaxsin(wt)\Delta v = \Delta V_{max} \sin(vt):

q=CΔVmaxsin(wt)q = C \Delta V_{max} \sin(vt)

A corrente é dada por:

iC=dqdt=wCΔVmaxcos(wt)i_C = \frac{dq}{dt} = vC \Delta V_{max} \cos(vt)

Usando a identidade trigonométrica cos(wt)=sin(wt+π2)\cos(vt) = \sin\left(vt + \frac{\pi}{2}\right):

iC=wCΔVmaxsin(wt+π2)i_C = vC \Delta V_{max} \sin\left(vt + \frac{\pi}{2}\right)

Resultado importante: a corrente num condensador antecipa-se 90° em relação à tensão. Ou seja, a corrente antecipa a tensão por um quarto de ciclo.

Representação gráfica: nos gráficos de tempo, o pico da corrente ocorre antes do pico da tensão. Em pontos onde a corrente é nula, o condensador está carregado ao máximo.

Diagrama fasorial: o fasor da corrente está 90° à frente do fasor da tensão.

Reactância capacitiva: o condensador oferece oposição à corrente alternada dependente da frequência:

XC=1wC


X_C = \frac{1}{vC}
Imax=ΔVmaxXCI_{max} = \frac{\Delta V_{max}}{X_C}

Interpretação: para frequências mais altas, a reactância capacitiva diminui, permitindo mais corrente. Quando a frequência se aproxima de zero (DC), XCX_C tende para infinito, bloqueando a corrente.

Valores rms:

Irms=ΔVrmsXC


33.5 O Circuito Série RLC 

Agora estuda-se um circuito série com resistência (R), bobine (L) e condensador (C) ligados a uma fonte de tensão AC:

Δv=ΔVmaxsin(wt)\Delta v = \Delta V_{max} \sin(vt)

A corrente no circuito é comum a todos os elementos:

i=Imaxsin(wtϕ)i = I_{max} \sin(vt - \phi)

onde ϕ\phi é o ângulo de fase entre a tensão aplicada e a corrente.

Características de fase:

  • Na resistência: tensão e corrente em fase.

  • Na bobine: tensão adianta-se à corrente por 90°.

  • No condensador: tensão atrasa-se da corrente por 90°.

Tensões instantâneas:

ΔvR=ImaxRsin(wt)\Delta v_R = I_{max} R \sin(vt) ΔvL=ImaxXLcos(wt)\Delta v_L = I_{max} X_L \cos(vt) ΔvC=ImaxXCcos(wt)\Delta v_C = -I_{max} X_C \cos(vt)

Impedância (Z): combina as três componentes considerando as diferenças de fase:

Z=R2+(XLXC)2Z = \sqrt{R^2 + (X_L - X_C)^2}

onde:

XL=wL,XC=1wCX_L = vL, \quad X_C = \frac{1}{vC}

Corrente máxima:

Imax=ΔVmaxZI_{max} = \frac{\Delta V_{max}}{Z}

Ângulo de fase:

tanϕ=XLXCR\tan \phi = \frac{X_L - X_C}{R}

  • Se XL>XCX_L > X_C: circuito mais indutivo → corrente atrasa-se em relação à tensão.

  • Se XL<XCX_L < X_C: circuito mais capacitivo → corrente antecipa-se em relação à tensão.

  • Se XL=XCX_L = X_C: circuito resistivo puro, ϕ=0\phi = 0.

Diagramas fasoriais: permitem somar as tensões nos diferentes elementos considerando as suas fases relativas. A soma vetorial resulta na tensão aplicada.

Conclusão: o comportamento do circuito série RLC depende fortemente da frequência de operação devido à variação de XLX_L e XCX_C. Este circuito pode exibir ressonância (discutida mais adiante no capítulo).


33.6 Potência num Circuito AC 

A potência instantânea fornecida por uma fonte AC é:

P=iΔvP = i \Delta v

Para um circuito RLC:

P=Imaxsin(wtϕ)ΔVmaxsin(wt)P = I_{max} \sin(vt - \phi) \cdot \Delta V_{max} \sin(vt)

Usando identidades trigonométricas e calculando o valor médio ao longo de um ciclo:

Pavg=12ImaxΔVmaxcosϕP_{avg} = \frac{1}{2} I_{max} \Delta V_{max} \cos \phi

Em termos de valores eficazes (rms):

Pavg=IrmsΔVrmscosϕP_{avg} = I_{rms} \Delta V_{rms} \cos \phi

onde cosϕ\cos \phi é o factor de potência.

Interpretação:

  • cosϕ=1\cos \phi = 1: carga puramente resistiva, máxima potência transferida.

  • cosϕ=0\cos \phi = 0: carga puramente reativa (bobine ou condensador puros), potência média zero.

Explicação física:

  • Numa resistência, a energia elétrica converte-se em calor → há consumo real de potência.

  • Numa bobine ou condensador ideais, a energia é armazenada e devolvida ao circuito → não há dissipação líquida de potência.

Factor de potência na prática: Em instalações industriais com cargas indutivas significativas (motores, transformadores), usa-se a compensação capacitiva para melhorar cosϕ\cos \phi, reduzindo perdas e aumentando a eficiência da rede.

Expressão alternativa para potência média:

Pavg=Irms2RP_{avg} = I_{rms}^2 R

Conclusão: a potência dissipada num circuito AC depende não só da corrente e tensão rms, mas também do factor de potência, que quantifica o desfasamento entre corrente e tensão.


33.7 Ressonância num Circuito Série RLC 

Um circuito série RLC comporta-se como um oscilador eléctrico. Quando a frequência da fonte coincide com a frequência natural do sistema, ocorre ressonância.

Impedância em AC:

Z=R2+(XLXC)2Z = \sqrt{R^2 + (X_L - X_C)^2}

onde:

XL=wLeXC=1wC.X_L = vL \quad \text{e} \quad X_C = \frac{1}{vC}.

A corrente eficaz (rms) é:

Irms=ΔVrmsZ.I_{rms} = \frac{\Delta V_{rms}}{Z}.

Na ressonância, XL=XCX_L = X_C, logo:

w0L=1w0Cw0=1LC.v_0 L = \frac{1}{v_0 C} \quad \Rightarrow \quad v_0 = \frac{1}{\sqrt{LC}}.

Propriedades da ressonância:

  • A impedância atinge o mínimo Z=RZ = R.

  • A corrente rms atinge o máximo:

Irms=ΔVrmsR.I_{rms} = \frac{\Delta V_{rms}}{R}.

  • Corrente e tensão estão em fase (ângulo de fase ϕ=0\phi = 0).

Curva de ressonância:

  • A largura da curva (em frequência) está relacionada com a resistência.

  • Quanto menor a resistência, mais estreita e alta é a curva de corrente em função da frequência.

Fator de qualidade (Q):

Q=w0Δv=w0LRQ = \frac{v_0}{\Delta v} = \frac{v_0 L}{R}

onde Δv\Delta v é a largura da curva a meia-potência (half-power points).

Aplicações práticas:

  • Circuitos de sintonia em rádios.

  • Seleção de uma frequência específica num sinal complexo.

  • Em rádios, o condensador variável permite ajustar a frequência de ressonância para captar diferentes estações.

Ideia central: A ressonância permite maximizar a resposta de corrente para uma frequência específica e filtrar todas as outras.


33.8 O Transformador e a Transmissão de Energia 

Os transformadores são dispositivos que mudam a tensão e a corrente alternada sem alterar significativamente a potência. São essenciais para a transmissão eficiente de energia elétrica a longas distâncias.

Estrutura:

  • Dois enrolamentos (primário e secundário) num núcleo de ferro.

  • O núcleo guia o fluxo magnético, garantindo acoplamento entre os enrolamentos.

Lei de Faraday:

Δv1=N1dΦBdt,Δv2=N2dΦBdt.\Delta v_1 = -N_1 \frac{d\Phi_B}{dt}, \quad \Delta v_2 = -N_2 \frac{d\Phi_B}{dt}.

Assumindo fluxo comum:

Δv2Δv1=N2N1.\frac{\Delta v_2}{\Delta v_1} = \frac{N_2}{N_1}.

Dois tipos principais:

  • Elevador de tensão: N2>N1N_2 > N_1, aumenta a tensão.

  • Redutor de tensão: N2<N1N_2 < N_1, reduz a tensão.

Conservação de potência (ideal):

I1Δv1=I2Δv2.I_1 \Delta v_1 = I_2 \Delta v_2.

Equivalência de resistências vistas do primário:

Req=(N1N2)2RL.R_{eq} = \left(\frac{N_1}{N_2}\right)^2 R_L.

Permite ajustar resistências para maximizar transferência de potência.

Transmissão de energia elétrica:

  • Alta tensão → Baixa corrente → Menores perdas I2RI^2 R.

  • Linhas de transmissão podem operar a centenas de quilovolts.

  • Subestações reduzem gradualmente a tensão para níveis seguros e úteis (ex.: 230 kV → 20 kV → 400 V → 230 V).

Eficiência: Transformadores reais têm eficácias elevadas (90%–99%).

Exemplos quotidianos:

  • Adaptadores de parede para aparelhos electrónicos.

  • Transformadores em redes de distribuição eléctrica.


33.9 Rectificadores e Filtros 

Muitos dispositivos electrónicos precisam de corrente contínua (DC) apesar de a rede fornecer corrente alternada (AC). Para isso usam-se rectificadores e filtros.

Rectificação:

  • Processo de conversão de AC em DC.

  • Principal elemento: díodo, que só conduz corrente num sentido.

  • Circuito típico: rectificador de meia-onda com díodo em série com a carga.

  • Resultado: corrente pulsante apenas numa direcção.

Filtro com condensador:

  • Adiciona-se um condensador em paralelo com a carga.

  • Suaviza a variação da tensão e corrente.

  • O condensador carrega-se quando a tensão sobe e descarrega-se lentamente, mantendo corrente na carga mesmo quando a entrada AC desce.

Problema do ripple:

  • Mesmo após filtragem, há uma pequena componente AC (ripple).

  • É importante reduzir o ripple para níveis insignificantes, especialmente em áudio para evitar hums (ex.: 50/60 Hz).

Filtros RC:

  • Circuitos específicos que deixam passar ou bloqueiam certas frequências.

  • Exemplo: filtro passa-alto RC.

    • Baixas frequências → tensão de saída muito menor que a entrada.

    • Altas frequências → saída ≈ entrada.

Aplicação: eliminar componentes de baixa frequência indesejadas e permitir sinais úteis de alta frequência.


33.10 Resumo

  • A corrente alternada (AC) varia sinusoidalmente, permitindo transporte eficiente de energia.

  • Em resistências, corrente e tensão estão em fase.

  • Em bobines, a corrente atrasa-se 90° em relação à tensão.

  • Em condensadores, a corrente antecipa-se 90° em relação à tensão.

  • A impedância combina resistência e reactâncias indutiva e capacitiva, dependendo da frequência.

  • Ressonância em circuitos série RLC ocorre quando XL=XCX_L = X_C, minimizando a impedância e maximizando a corrente.

  • Transformadores permitem alterar níveis de tensão e corrente para transmissão eficiente de energia.

  • Rectificadores convertem AC em DC, com filtros (normalmente com condensadores) para suavizar a saída.



Capa do Capítulo 33, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed



🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

Formulário de Contacto

Nome

Email *

Mensagem *