Pesquisar neste blogue

Mostrar mensagens com a etiqueta Corrente. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Corrente. Mostrar todas as mensagens

segunda-feira, 19 de maio de 2025

Resumo extraído do Capítulo 28, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed

Capítulo 28 – Corrente contínua

Secção 28.1 – Força Electromotriz (f.e.m.)
Nesta secção introduz-se o conceito de força electromotriz (f.e.m.) como a diferença de potencial máxima que uma fonte (por exemplo, uma bateria) pode fornecer entre os seus terminais, denotada por E\mathcal{E}. Embora o termo “força” seja histórico — pois a f.e.m. não é uma força mas sim uma tensão — pode entender-se a fonte de f.e.m. como uma “bomba de cargas” que eleva as cargas do potencial mais baixo para o mais alto dentro da bateria.

Num circuito real, a bateria apresenta uma resistência interna rr, de modo que a tensão nos terminais, VtermV_{\text{term}}, difere da f.e.m. quando há corrente. A relação fundamental é

Vterm=EIr,V_{\text{term}} = \mathcal{E} - I\,r,

onde II é a corrente do circuito. Assim, quando o circuito está em circuito aberto (I=0I=0), Vterm=EV_{\text{term}} = \mathcal{E} (tensão em vazio), mas quando a corrente circula, parte da energia é dissipada internamente na bateria.

Combinando-se com a lei de Ohm para a resistência externa RR, obtém-se

E=IR+IrI=ER+r.\mathcal{E} = I R + I r \quad\Longrightarrow\quad I = \frac{\mathcal{E}}{R + r}.

Multiplicando por II vemos ainda que a potência total fornecida pela fonte, IEI\mathcal{E}, divide-se entre I2RI^2 R no circuito externo e I2rI^2 r na resistência interna. Para maximizar a potência útil, deve minimizar-se rr.



Secção 28.2 – Resistências em Série e em Paralelo
Descreve-se primeiro a montagem em série, onde resistências R1,R2,R_1, R_2, \dots partilham a mesma corrente II. A tensão total divide-se pelas resistências, resultando numa resistência equivalente

Req=R1+R2+,R_{\mathrm{eq}} = R_1 + R_2 + \cdots,

sempre maior do que qualquer resistência individual. Uma falha em série causa circuito aberto e interrompe toda a corrente.

Em seguida analisa-se a montagem em paralelo, em que todos as resistências estão sujeitos à mesma tensão VV mas a corrente divide-se em cada ramo. A resistência equivalente satisfaz

1Req=1R1+1R2+,\frac{1}{R_{\mathrm{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots,

sendo ReqR_{\mathrm{eq}} sempre inferior à mais pequena das resistências. Neste esquema, uma falha num ramo não impede a corrente nos restantes.

São também discutidas aplicações práticas: em paralelo, cada aparelho doméstico opera independentemente sob a mesma tensão; em série, como nos pequenos enfeites de Natal, usa-se um jumper interno para manter o circuito mesmo quando um filamento queima, mas isso aumenta a corrente nos restantes.



Secção 28.3 – Leis de Kirchhoff
Para circuitos mais complexos, que não se reduzem a simples séries ou paralelos, aplicam-se as duas leis de Kirchhoff:

  1. Lei dos Nós: a soma algébrica das correntes num nó (ponto de ramificação) é zero, refletindo a conservação de carga:
    IentradasIsaıˊdas=0.\sum I_{\text{entradas}} - \sum I_{\text{saídas}} = 0.

  2. Lei das Malhas: ao percorrer uma malha fechada, a soma das diferenças de potencial é nula, expressando a conservação de energia:
    ΔV=0.\sum \Delta V = 0.

Para aplicar, escolhe-se direções arbitrárias para as correntes e percorrem-se laços assumindo sinal positivo para subidas de potencial (por exemplo, atravessar a f.e.m. de – para +) e negativo para descidas (queda IRIR no sentido da corrente). Resolve-se então o sistema de equações lineares obtido, onde soluções negativas indicam correntes no sentido oposto ao assumido.

Este método geral permite analisar circuitos de múltiplos ramos e fontes, sendo essencial em casos de malhas e nós em número maior do que os casos tratáveis apenas com combinações série/paralelo.



Secção 28.4 – Circuitos RC

Num circuito RC em série, uma resistência R e um condensador C estão ligados a uma fonte de emf E\mathcal{E} através de um interruptor. Existem dois casos distintos:

  1. Carregamento do condensador

    • No instante em que o interruptor é colocado na posição de carga (t=0t=0), o condensador está descarregado (q=0q=0) e a corrente inicial máxima é

      Ii=ER.I_i=\frac{\mathcal{E}}{R}.

    • À medida que o condensador acumula carga, a diferença de potencial q/Cq/C cresce, reduzindo a corrente segundo a equação diferencial

      EqCiR=0,i=dqdt.\mathcal{E}-\frac{q}{C}-iR=0,\quad i=\frac{\mathrm{d}q}{\mathrm{d}t}.

      Integrando, obtém-se

      q(t)=Qmax(1et/RC),Qmax=CE,q(t)=Q_{\max}\bigl(1-e^{-t/RC}\bigr),\quad Q_{\max}=C\mathcal{E}, i(t)=ERet/RC.i(t)=\frac{\mathcal{E}}{R}e^{-t/RC}.

      A constante de tempo do circuito é

      τ=RC,\tau=RC,

      e caracteriza o decaimento exponencial: após t=τt=\tau, a carga atinge 63,2 % de QmaxQ_{\max} e a corrente cai para 36,8 % de IiI_i.

  2. Descarregamento do condensador

    • Se, após carregado, o interruptor passa para a posição de descarga num circuito sem fonte de emf, a equação da malha torna-se

      qC+iR=0,i=dqdt.\frac{q}{C}+iR=0,\quad i=-\frac{\mathrm{d}q}{\mathrm{d}t}.

      A solução é

      q(t)=Qiet/RC,i(t)=QiRCet/RC,q(t)=Q_i\,e^{-t/RC},\quad i(t)=-\frac{Q_i}{RC}\,e^{-t/RC},

      onde QiQ_i é a carga inicial do condensador e o sinal negativo em i(t)i(t) indica que a corrente flui no sentido oposto ao do carregamento.



Secção 28.5 – Instalações Elétricas Domésticas e Segurança

  1. Ligação da rede

    • A empresa de energia fornece duas fases em paralelo: o fio “vivo” (aprox. 230 V) e o fio neutro (0 V). Um contador mede a energia no fio vivo antes de o circuito interior se subdividir em vários ramos, cada um protegido por fusíveis ou disjuntores dimensionados para a corrente máxima do ramo.

    • Num circuito típico, aparelhos como uma torradeira (1 000 W), micro-ondas (1 300 W) e cafeteira (800 W) são ligados em paralelo consomem correntes individuais.

  2. Proteções e riscos

    • Curto-circuito: contacto acidental do fio vivo com terra ou neutro produz corrente muito elevada e dispara o disjuntor, evitando sobreaquecimento.

    • Fio de terra: em tomadas de três pinos, o terceiro fio liga a carcaça dos aparelhos à terra; em caso de fuga do fio vivo ao chassis, a corrente prefere esse caminho de baixa resistência, poupando o utilizador a choque elétrico.

    • GFCI (Ground-Fault Circuit Interrupter): usado em zonas húmidas (cozinhas, casas de banho), desliga o circuito em <1 ms ao detetar fugas de corrente, protegendo contra choques elétricos.

    • Efeitos no corpo humano: correntes ≤5 mA provocam apenas formigueiro; entre 10 mA e 100 mA podem causar contrações musculares e paragem respiratória; correntes de ≈1 A produzem queimaduras graves e podem ser fatais. Contacto com água ou superfícies metálicas aumenta o risco.


Resumo do Capítulo 28

  • Força electromotriz (f.e.m.) E\mathcal{E}: tensão máxima que uma fonte fornece em vazio; tensão aos terminais em carga:

    Vterm=EIr.V_{\rm term}=\mathcal{E}-I\,r.
  • Resistências em série e paralelo:

    Req(seˊrie)=iRi,1Req(par)=i1Ri.R_{\rm eq}^{(\text{série})}=\sum_i R_i, \quad \frac{1}{R_{\rm eq}^{(\text{par})}}=\sum_i\frac{1}{R_i}.
  • Leis de Kirchhoff:

    1. Lei dos Nós: Ientr=Isai\sum I_{\rm entr}=\sum I_{\rm sai}.

    2. Lei das Malhas: ΔV=0\sum\Delta V=0 em cada malha, com sinais conforme o sentido da corrente e polaridade das fontes.

  • Circuitos RC:

    • Carregamento:
      q(t)=CE(1et/RC),i(t)=ERet/RC.\displaystyle q(t)=C\mathcal{E}(1-e^{-t/RC}),\quad i(t)=\tfrac{\mathcal{E}}{R}e^{-t/RC}.

    • Descarregamento:
      q(t)=Qiet/RC,i(t)=QiRCet/RC.\displaystyle q(t)=Q_i\,e^{-t/RC},\quad i(t)=-\tfrac{Q_i}{RC}e^{-t/RC}.


 



domingo, 4 de maio de 2025

Resumo extraído do Capítulo 27, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed


Capítulo 27 – Corrente e Resistência

27.1 Corrente Eléctrica

Esta secção introduz o conceito de corrente eléctrica como o fluxo ordenado de carga eléctrica através de um material, geralmente causado por uma diferença de potencial. A corrente média IavgI_{\text{avg}} é definida como a quantidade de carga ΔQ\Delta Q que passa por uma área AA por unidade de tempo Δt\Delta t:

Iavg=ΔQΔtI_{\text{avg}} = \frac{\Delta Q}{\Delta t}

A corrente instantânea é:

I=dQdtI = \frac{dQ}{dt}
  • A unidade SI é o ampere (A), equivalente a 1 coulomb por segundo.

  • A direção convencional da corrente corresponde ao movimento de carga positiva.

  • Nos metais, os portadores de carga são electrões (carga negativa), mas a direção da corrente é convencionalmente oposta ao seu movimento.

  • Um modelo microscópico é apresentado: os portadores de carga movem-se com uma velocidade de deriva média vdv_d, apesar do seu movimento aleatório (semelhante ao de moléculas num gás).

  • A corrente é expressa como:

I=nqvdAI = nqv_d A

em que nn é a densidade de portadores de carga, qq a carga de cada um e AA a área da secção transversal do condutor.


27.2 Resistência

Aqui é abordada a oposição ao fluxo de corrente num condutor. A densidade de corrente é definida como:

J=IA=nqvdJ = \frac{I}{A} = nqv_d
  • Quando há um campo eléctrico E\vec{E}, a densidade de corrente está relacionada com ele por:

J=σEJ = \sigma E

onde σ\sigma é a condutividade. Se esta relação se verificar, diz-se que o material é óhmico (obedece à Lei de Ohm).

  • A resistência RR de um condutor de comprimento \ell e área AA é:

R=σA=ρAR = \frac{\ell}{\sigma A} = \frac{\rho \ell}{A}

com ρ=1/σ\rho = 1/\sigma, a resistividade do material.

  • A Lei de Ohm em termos de grandezas macroscópicas:

V=IRV = IR
  • É importante distinguir entre:

    • Resistividade (ρ): propriedade do material.

    • Resistência (R): propriedade do objeto (geometria + material).

  • São discutidos resistências comerciais, com valores indicados por código de cores.

  • A secção conclui com exemplos que mostram como calcular a resistência de um fio e de um cabo coaxial.


27.3 Modelo de Condução Eléctrica

Esta secção introduz o modelo de Drude para descrever a condução eléctrica em metais:

  1. Os metais são vistos como um arranjo regular de átomos com electrões livres (electrões de condução).

  2. Na ausência de campo eléctrico, os electrões movem-se de forma aleatória (sem corrente resultante).

  3. Com um campo eléctrico aplicado, os electrões adquirem uma velocidade de deriva oposta ao campo.

  • A força sobre um electrão é:

F=qE\vec{F} = q \vec{E}

e a aceleração média:

a=qEmea = \frac{qE}{m_e}
  • Após considerar o intervalo médio entre colisões τ\tau, obtém-se a velocidade de deriva:

vd=qEτmev_d = \frac{qE \tau}{m_e}
  • A densidade de corrente pode ser reescrita como:

J=nq2τmeEσ=nq2τmeeρ=menq2τJ = \frac{nq^2 \tau}{m_e} E \Rightarrow \sigma = \frac{nq^2 \tau}{m_e} \quad \text{e} \quad \rho = \frac{m_e}{nq^2 \tau}
  • A equação acima mostra que a resistividade está relacionada com:

    • massa do electrão,

    • densidade de portadores de carga,

    • tempo médio entre colisões.

  • A teoria clássica prevê incorretamente a dependência da resistividade com a temperatura. Para corrigir isso, é introduzido um modelo quântico que considera o comportamento ondulatório dos electrões.

  • No modelo quântico:

    • Se a estrutura atómica for perfeitamente periódica, não há colisões (resistência nula).

    • A resistividade real deve-se a impurezas e vibrações térmicas dos átomos (mais notórias a altas temperaturas).


27.4 Resistência e Temperatura

Esta secção descreve como a resistividade de um condutor varia com a temperatura. Para muitos materiais condutores (sobretudo metais), essa variação é aproximadamente linear numa gama limitada de temperaturas:

ρ=ρ0[1+α(TT0)]\rho = \rho_0 [1 + \alpha (T - T_0)]

onde:

  • ρ\rho é a resistividade à temperatura TT,

  • ρ0\rho_0 é a resistividade à temperatura de referência T0T_0 (geralmente 20 °C),

  • α\alpha é o coeficiente de temperatura da resistividade, dado por:

α=1ρ0ΔρΔT\alpha = \frac{1}{\rho_0} \cdot \frac{\Delta \rho}{\Delta T}

  • Como a resistência R depende de ρ\rho, a sua variação com a temperatura é análoga:

R=R0[1+α(TT0)]R = R_0 [1 + \alpha (T - T_0)]

  • Para metais como o cobre, o gráfico de resistividade vs. temperatura é linear numa grande gama, mas tende para um valor finito à medida que a temperatura se aproxima do zero absoluto. Essa resistividade residual deve-se a impurezas e imperfeições.

  • Alguns materiais, como semicondutores (ex. carbono, germânio, silício), têm coeficiente α\alpha negativo, ou seja, a resistividade diminui com o aumento da temperatura. Isso deve-se ao aumento do número de portadores de carga.


27.5 Supercondutores

Nesta secção é descrita a supercondutividade, um fenómeno onde a resistência eléctrica de certos materiais cai abruptamente para zero abaixo de uma temperatura crítica TcT_c.

  • Exemplo clássico: o mercúrio torna-se supercondutor abaixo de 4,15 K.

  • A resistividade em estado supercondutor pode ser menor que 4×1025Ωm4 \times 10^{-25} \, \Omega \cdot m, cerca de 101710^{17} vezes menor do que a do cobre.

Características:

  • Uma corrente eléctrica pode persistir indefinidamente num circuito supercondutor, sem necessidade de fonte de tensão (pois R=0R = 0, e V=IR=0V = IR = 0).

  • Existem dois grandes grupos:

    • Metálicos, como os inicialmente descobertos (ex.: Hg, Pb).

    • Cerâmicos, com temperaturas críticas muito mais altas (ex.: YBa₂Cu₃O₇ com Tc=92KT_c = 92\,K).

Aplicações:

  • Imagem por ressonância magnética (MRI),

  • Armazenamento de energia em campos magnéticos intensos,

  • Levitação magnética (maglev),

  • Linhas de transmissão eléctrica sem perdas (ainda em investigação).


27.6 Potência Eléctrica

Esta secção liga os conceitos de corrente, tensão e resistência ao ritmo de transferência de energia nos circuitos eléctricos. Quando uma carga QQ atravessa uma diferença de potencial ΔV\Delta V, a energia transferida é QΔVQ \Delta V. A potência (energia por unidade de tempo) é:

P=IΔVP = I \Delta V

Se a carga atravessar uma resistência, a energia é transformada em energia interna (aquecimento do material), fenómeno chamado de aquecimento por efeito Joule. Combinando com a Lei de Ohm V=IRV = IR, temos outras formas da potência:

P=I2RouP=(ΔV)2RP = I^2 R \quad \text{ou} \quad P = \frac{(\Delta V)^2}{R}

  • A unidade SI da potência é o watt (W).

  • As perdas em cabos eléctricos são inevitáveis devido à resistência dos materiais. A potência dissipada (perdida) é dada por P=I2RP = I^2 R.

  • Para minimizar perdas:

    • A energia eléctrica é transmitida a altas tensões e correntes reduzidas, reduzindo o termo I2RI^2 R.

    • Transformadores são usados para aumentar e depois reduzir a tensão.

  • A secção termina com exemplos sobre:

    • Aquecedores eléctricos,

    • Estimativa de custo de energia,

    • Relação entre eletricidade e termodinâmica.


🧲 Quadro-Resumo – Corrente e Resistência 

⚡ Corrente Eléctrica

Quantidade Símbolo Fórmula / Definição Unidade SI
Corrente média IavgI_{\text{avg}} Iavg=ΔQΔtI_{\text{avg}} = \dfrac{\Delta Q}{\Delta t} ampere (A)
Corrente instantânea II I=dQdtI = \dfrac{dQ}{dt} ampere (A)
Corrente microscópica II I=nqvdAI = nq v_d A ampere (A)
Densidade de corrente JJ J=IA=nqvdJ = \dfrac{I}{A} = nqv_d A/m²
Velocidade de deriva vdv_d vd=qEτmev_d = \dfrac{qE\tau}{m_e} m/s

🧮 Resistência e Resistividade

Conceito Símbolo Fórmula / Relação Unidade SI
Lei de Ohm V=IRV = IR V, A, Ω
Resistência (definição) RR R=VIR = \dfrac{V}{I} ohm (Ω)
Resistência (forma geométrica) RR R=ρAR = \dfrac{\rho \ell}{A} ohm (Ω)
Resistividade ρ\rho ρ=1σ\rho = \dfrac{1}{\sigma} Ω·m
Condutividade σ\sigma σ=1ρ=nq2τme\sigma = \dfrac{1}{\rho} = \dfrac{nq^2\tau}{m_e} S/m

🌡️ Variação com a Temperatura

Quantidade Fórmula Notas
Resistividade com a temperatura ρ=ρ0[1+α(TT0)]\rho = \rho_0 [1 + \alpha (T - T_0)] α\alpha é o coeficiente de temperatura
Resistência com a temperatura R=R0[1+α(TT0)]R = R_0 [1 + \alpha (T - T_0)] Válido para intervalos moderados de TT

❄️ Supercondutores

  • Resistência cai abruptamente para zero abaixo da temperatura crítica TcT_c.

  • Correntes persistentes sem fonte de energia.

  • Aplicações: MRI, maglev, armazenamento de energia.


🔥 Potência Eléctrica

Expressão Fórmula Situação
Potência geral P=IVP = IV Energia por segundo
Potência em resistências P=I2RP = I^2 R ou P=V2RP = \dfrac{V^2}{R} Efeito Joule
Unidade de potência watt (W) 1W=1V1A1 \, \text{W} = 1\,\text{V} \cdot 1\,\text{A}
Custo de energia Energia=Pt\text{Energia} = P \cdot t Energia em kWh = kW × h

🧠 Conceitos Importantes

  • Corrente não é "consumida": é constante num circuito em série.

  • Resistência depende do material (ρ) e da geometria do fio (comprimento e área).

  • A resistividade de metais aumenta com a temperatura; em semicondutores, diminui.

  • Altas tensões e baixas correntes são usadas na distribuição de energia para minimizar perdas I2RI^2 R.



Capítulo 27, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed



🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

terça-feira, 25 de junho de 2013

Lei de Ohm


Calculadora automática pela Lei de Ohm

1ª Lei de Ohm e potência elétrica. Digite apenas dois valores nos campos e pressione o botão Calcular. Bons estudos!
Voltagem(U):VResistência(R):Ω
Amperagem(i):APotência(P):W

1ª lei de Ohm e potência




Se quiser explicações sobre matérias que encontre neste blogue), contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer.





Formulário de Contacto

Nome

Email *

Mensagem *