Pesquisar neste blogue

terça-feira, 25 de março de 2025

Transformador DC - Exercício resolvido, pág 5 de 5

Problema II da 1ª frequência de 2023, de Máquinas Elétricas e Acionamentos

A pág. 4 está aqui.

Transformador DC - Exercício resolvido, pág 5 de 5




🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior


segunda-feira, 24 de março de 2025

Resumo extraído do Capítulo 2 do livro "Logic and Computer Design Fundamentals" de Morris Mano


O capítulo 2 apresenta conceitos fundamentais sobre lógica combinatória, fornecendo a base para o projeto e otimização de circuitos digitais. As técnicas abordadas, como álgebra de Boole e Mapas de Karnaugh, são essenciais para a redução de custos e eficiência no design de sistemas digitais.

Capítulo 2 - Circuitos Lógicos Combinacionais

2.1 Lógica Binária e Portas Lógicas

Os circuitos digitais manipulam informação binária, sendo implementados em circuitos integrados. As portas lógicas são os blocos básicos, modeladas matematicamente sem a necessidade de compreender os seus componentes internos.

Operações Básicas da Álgebra de Boole

  • AND: A saída é 1 apenas se todas as entradas forem 1.

  • OR: A saída é 1 se pelo menos uma entrada for 1.

  • NOT: Inverte o valor da entrada.

  • NAND e NOR: Complementos das operações AND e OR, respectivamente.

  • XOR e XNOR: Exclusivo-OU e o seu complemento.

2.2 Álgebra de Boole

A álgebra de Boole é uma ferramenta fundamental para a manipulação de expressões lógicas. Os operadores seguem leis e identidades que ajudam na simplificação dos circuitos:

  • Leis Comutativa, Associativa e Distributiva

  • Teorema de DeMorgan, que inverte a operação e os complementos

  • Teorema da Consistência: elimina redundâncias em expressões lógicas

2.3 Formas Padrão de Expressões Booleanas

As funções lógicas podem ser expressas de duas formas padronizadas:

  • Soma de Produtos (Sum of Products - SOP): Expressão formada por um conjunto de produtos (AND) somados (OR).

  • Produto de Somas (Product of Sums - POS): Expressão com um conjunto de somas (OR) multiplicadas (AND).

Os conceitos de mintermos e maxtermos permitem a representação sistemática das funções lógicas.

2.4 Otimização de Circuitos de Dois Níveis

A otimização procura reduzir a complexidade de um circuito. O Mapa de Karnaugh (K-map) é uma ferramenta visual para simplificar expressões booleanas eliminando redundâncias e reduzindo o número de portas lógicas.

Critérios de Custo

  • Custo Literal: Quantidade de aparições das variáveis.

  • Custo de Entrada das Portas: Soma das entradas necessárias para implementar a expressão.

A minimização das expressões reduz a quantidade de portas e o tempo de propagação do sinal.

2.5 Linguagens de Descrição de Hardware (HDLs)

As linguagens VHDL e Verilog são introduzidas para descrever circuitos digitais. Elas permitem a modelação estrutural e comportamental dos circuitos e facilitam a automação do projeto e a síntese de hardware.

Capítulo 2 do livro "Logic and Computer Design Fundamentals" de Morris Mano





🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

domingo, 23 de março de 2025

Frequência 1 de Análise de Circuitos


E6-A, Frequência 1, 29-4-2022 - UBI

Frequência 1 de Análise de Circuitos




🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

sábado, 22 de março de 2025

Resumo extraído do Capítulo 2 do livro Basic Engineering Circuit Analysis de J. David Irwin e R. Mark Nelms


Resumo do Capítulo 2 – Circuitos Resistivos

Objetivos de Aprendizagem

Este capítulo apresenta os fundamentos da análise de circuitos resistivos e ensina os alunos a:

  • Aplicar a Lei de Ohm para calcular tensões e correntes.
  • Utilizar as Leis de Kirchhoff para determinar tensões e correntes nos circuitos.
  • Analisar circuitos de malha única e de nó único para calcular os parâmetros elétricos.
  • Determinar a resistência equivalente de redes de resistores em série e paralelo.
  • Aplicar os princípios da divisão de tensão e corrente.
  • Transformar redes resistivas do tipo estrela para triângulo e vice-versa.
  • Analisar circuitos com fontes dependentes.

2.1 – Lei de Ohm

A Lei de Ohm estabelece que a tensão (VV) através de uma resistência é proporcional à corrente (II) que a atravessa, com a resistência (RR) como constante de proporcionalidade:

V=RIV = RI

As resistências são dispositivos que podem ser compradas com valores padronizados e são fabricadas em diferentes materiais, como carbono, fio enrolado, filme metálico ou semicondutores.

Outros conceitos abordados:

  • A potência dissipada por uma resistência é dada por: P=VI=I2R=V2RP = VI = I^2 R = \frac{V^2}{R}
  • A condutância (GG) é o inverso da resistência: G=1RG = \frac{1}{R}

2.2 – Leis de Kirchhoff

Lei das Correntes de Kirchhoff (KCL)

A soma algébrica das correntes que entram e saem de um nó é zero:

Ientrada=Isaıˊda\sum I_{\text{entrada}} = \sum I_{\text{saída}}

Lei das Tensões de Kirchhoff (KVL)

A soma algébrica das tensões em qualquer malha fechada de um circuito é zero:

V=0\sum V = 0

Isto é consequência da conservação de energia.

O capítulo apresenta exemplos práticos destas leis aplicadas a circuitos simples e complexos.


2.3 – Circuitos de Malha Única

Circuitos de malha única contêm apenas um caminho fechado para a corrente. Aplicam-se a eles:

  • Lei das Tensões de Kirchhoff (KVL) para encontrar tensões.
  • Lei de Ohm para calcular correntes.
  • O conceito de divisão de tensão: VR=RRtotalVfonteV_R = \frac{R}{R_{\text{total}}} V_{\text{fonte}}
  • Redução de fontes de tensão em série para uma única fonte equivalente.

Exemplos incluem circuitos em série e análise de perdas de potência em linhas de transmissão.


2.4 – Circuitos de Nó Único

Em circuitos paralelos, todos os elementos compartilham a mesma tensão. Aplicam-se a eles:

  • Lei das Correntes de Kirchhoff (KCL) para encontrar correntes.
  • Lei de Ohm para calcular tensões.
  • O conceito de divisão de corrente: IR=RoutroR1+R2IfonteI_R = \frac{R_{\text{outro}}}{R_1 + R_2} I_{\text{fonte}}
  • Redução de resistências em paralelo: Req=R1R2R1+R2R_{\text{eq}} = \frac{R_1 R_2}{R_1 + R_2}
  • Redução de fontes de corrente em paralelo para uma única fonte equivalente.

Exemplos incluem circuitos com várias fontes e métodos para encontrar a resistência equivalente em terminais específicos.


Em suma

Este capítulo introduz as leis e conceitos fundamentais para a análise de circuitos resistivos, abordando tanto circuitos simples como redes complexas. O conhecimento adquirido aqui serve de base para estudos mais avançados em análise de circuitos elétricos.

Capítulo 2 do livro Basic Engineering Circuit Analysis de J. David Irwin e R. Mark Nelms






🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

sexta-feira, 21 de março de 2025

Resolução de problema sobre motor de indução. Página 2 de 3.

Máquinas Elétricas e Acionamentos.
MEA - ENIDH - Exame de 27-01-2025, prob4

A página 1 está aqui.


Resolução de problema sobre motor de indução. Página 2 de 3.



🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

quinta-feira, 20 de março de 2025

Resumo extraído do Capítulo 24, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed


O capítulo 24 do livro Physics for Scientists and Engineers with Modern Physics aborda a Lei de Gauss, uma ferramenta poderosa para calcular campos elétricos de distribuições de carga altamente simétricas. O capítulo está dividido nas seguintes secções:


24.1 Fluxo Elétrico

O conceito de fluxo elétrico é introduzido como a medida da quantidade de linhas de campo elétrico que atravessam uma determinada superfície. Se o campo elétrico E\mathbf{E} for uniforme e a superfície tiver uma área AA, o fluxo elétrico ΦE\Phi_E é dado por:

ΦE=EAcosθ\Phi_E = E A \cos \theta

onde θ\theta é o ângulo entre o vetor campo elétrico e o vetor normal à superfície. Para superfícies não planas ou campos elétricos variáveis, o fluxo elétrico é expresso como um integral de superfície:

ΦE=superfıˊcieEdA\Phi_E = \int_{\text{superfície}} \mathbf{E} \cdot d\mathbf{A}

O fluxo elétrico através de uma superfície fechada pode ser positivo (mais linhas de campo saindo do que entrando), negativo (mais linhas entrando do que saindo) ou nulo (quantidade igual de linhas entrando e saindo).


24.2 Lei de Gauss

A Lei de Gauss estabelece que o fluxo elétrico total através de uma superfície fechada (EdA\oint \mathbf{E} \cdot d\mathbf{A}) é proporcional à carga líquida qinq_{\text{in}} dentro da superfície:

EdA=qinε0\oint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{\text{in}}}{\varepsilon_0}

onde ε0\varepsilon_0 é a permissividade elétrica do vácuo.

  • Se uma superfície fechada contém um ponto de carga qq, o fluxo elétrico é q/ε0q/\varepsilon_0.
  • Se a carga está fora da superfície fechada, o fluxo líquido é zero, pois as linhas de campo que entram também saem.

A Lei de Gauss é particularmente útil para distribuições de carga simétricas, onde permite calcular o campo elétrico sem recorrer a integrais complicados.


24.3 Aplicação da Lei de Gauss a Diferentes Distribuições de Carga

A Lei de Gauss é utilizada para determinar o campo elétrico em distribuições simétricas:

  1. Distribuição esférica (esfera carregada uniformemente):

    • Fora da esfera (r>ar > a): o campo comporta-se como se toda a carga estivesse concentrada no centro.
    • Dentro da esfera (r<ar < a): o campo cresce linearmente com rr.
    Efora=keQr2,Edentro=keQa3rE_{\text{fora}} = \frac{k_e Q}{r^2}, \quad E_{\text{dentro}} = \frac{k_e Q}{a^3} r
  2. Distribuição cilíndrica (fio infinito com carga linear λ\lambda):

    • O campo elétrico decresce com a distância rr do eixo do cilindro:
    E=λ2πε0rE = \frac{\lambda}{2\pi \varepsilon_0 r}
  3. Plano infinito de carga (densidade superficial σ\sigma):

    • O campo elétrico é constante e independente da distância:
    E=σ2ε0E = \frac{\sigma}{2\varepsilon_0}
  4. Duas placas carregadas (condensador de placas paralelas):

    • O campo entre as placas é uniforme e dado por:
    E=σε0E = \frac{\sigma}{\varepsilon_0}

24.4 Condutores em Equilíbrio Eletrostático

Quando um condutor está em equilíbrio eletrostático, apresenta as seguintes propriedades:

  1. O campo elétrico dentro do condutor é zero, pois as cargas livres redistribuem-se até que a força elétrica interna desapareça.

  2. Toda a carga líquida reside na superfície externa do condutor.

  3. O campo elétrico logo fora do condutor é perpendicular à sua superfície e tem magnitude:

    E=σε0E = \frac{\sigma}{\varepsilon_0}
  4. Em condutores de formato irregular, a densidade de carga é maior em regiões de menor raio de curvatura (pontos pontiagudos acumulam mais carga).

Estas propriedades explicam fenómenos como o efeito de blindagem eletrostática e a gaiola de Faraday.






🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

quarta-feira, 19 de março de 2025

Física A - FCUL - série 3, problema 13

Resolução de exercício de campo eléctrico


Física A - FCUL - série 3, problema 13
Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


terça-feira, 18 de março de 2025

Resumo extraído do primeiro capítulo do livro Modern Control Engineering de Katsuhiko Ogata, 5ª edição


Resumo do Capítulo 1 – Introdução aos Sistemas de Controlo

1.1 Introdução

Este capítulo apresenta uma visão geral da teoria dos sistemas de controlo, abordando as teorias clássica, moderna e robusta. Explica a importância dos sistemas de controlo automático em diversas áreas da engenharia, como veículos espaciais, sistemas robóticos e processos industriais.

O livro destina-se a estudantes de engenharia e inclui materiais matemáticos complementares sobre transformadas de Laplace e análise vetorial-matricial nos apêndices.

Breve História do Desenvolvimento da Teoria de Controlo

  • James Watt (século XVIII) desenvolveu o governador centrífugo para o controlo de velocidade de motores a vapor.
  • Minorsky (1922) trabalhou em controladores automáticos para navios e estudou estabilidade.
  • Nyquist (1932) desenvolveu um método para análise da estabilidade de sistemas em malha fechada.
  • Hazen (1934) introduziu o termo servomecanismos e discutiu controladores de posição.
  • Anos 1940–1950: desenvolvimento do diagrama de Bode e do método do lugar das raízes (Evans). A teoria clássica tornou-se predominante, baseada na resposta em frequência e no domínio da transformada de Laplace.
  • Anos 1960–1980: a teoria moderna emergiu com o uso de variáveis de estado e análise no domínio do tempo, permitindo o controlo de sistemas mais complexos e multivariáveis.
  • Anos 1980–1990: foco na teoria de controlo robusto, que considera incertezas nos modelos e utiliza métodos avançados para garantir estabilidade e desempenho.

1.2 Exemplos de Sistemas de Controlo

São apresentados vários exemplos práticos de sistemas de controlo:

  • Sistema de controlo de velocidade: exemplificado pelo governador de Watt para motores, que ajusta automaticamente a quantidade de combustível para manter a velocidade desejada.
  • Sistema de controlo de temperatura: um forno elétrico cuja temperatura é monitorizada e ajustada automaticamente.
  • Sistemas empresariais: o controlo pode ser aplicado a processos organizacionais para otimizar desempenho e minimizar erros.
  • Sistemas de controlo robusto: abordagem que considera incertezas no modelo do sistema, garantindo que o desempenho seja mantido apesar das variações.

1.3 Controlo em Malha Fechada vs. Malha Aberta

  • Sistemas de controlo em malha fechada (feedback): utilizam realimentação para comparar o valor de saída com o valor desejado, ajustando a entrada para minimizar erros. Exemplo: um termostato regula a temperatura de uma sala.
  • Sistemas de controlo em malha aberta: não possuem realimentação, operam com base em configurações predefinidas e não corrigem automaticamente desvios. Exemplo: uma máquina de lavar roupa que executa ciclos com tempos fixos sem medir a limpeza das roupas.

Comparação:
-> Vantagens da malha fechada: insensibilidade a perturbações, maior precisão e correção automática de erros.
-> Desvantagens: maior complexidade, custo e possível instabilidade se o feedback não for bem projetado.

1.4 Projeto e Compensação de Sistemas de Controlo

O capítulo introduz conceitos de projeto e compensação de sistemas de controlo:

  • Compensação refere-se a ajustes no sistema para garantir que atenda às especificações desejadas. Pode ser feita por controladores PID, técnicas de resposta em frequência, lugar das raízes e espaço de estados.
  • O primeiro passo no projeto é definir as especificações de desempenho, como tempo de resposta, estabilidade e erro em regime permanente.

1.5 Estrutura do Livro

Os capítulos seguintes tratam de modelação matemática de sistemas, resposta transitória e em regime permanente, análise de estabilidade, técnicas de compensação e métodos modernos de controlo, incluindo a teoria de controlo ótimo e robusto.







Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


segunda-feira, 17 de março de 2025

Resolução de exercício de campo eléctrico

Física A - FCUL - série 3, problema 12

Física A - FCUL - série 3, problema 12



Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


domingo, 16 de março de 2025

Instalar e configurar Google Drive no PC







Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


sábado, 15 de março de 2025

Resumo extraído do capítulo 1 livro "Computer Organization and Design RISC-V 2nd edition, by Hennessy and Patterson


Capítulo 1: Abstrações e Tecnologia de Computadores

1.1 Introdução

O capítulo introduz a importância dos sistemas computacionais na sociedade moderna e a constante evolução da tecnologia. São destacados exemplos de avanços tecnológicos, como a computação em automóveis, telemóveis, o Projeto Genoma Humano e a Web. Além disso, são apresentadas três grandes categorias de aplicações de computadores:

  1. Computadores Pessoais (PCs) – Focados na performance para um único utilizador a baixo custo.
  2. Servidores – Computadores de grande capacidade, projetados para múltiplos utilizadores e aplicações complexas.
  3. Computadores Embebidos – Presentes em eletrodomésticos, automóveis, entre outros, com requisitos específicos de desempenho e consumo energético.

O capítulo também discute a transição da era do PC para a era dos dispositivos móveis pessoais (PMDs) e a ascensão da computação na nuvem (Cloud Computing).


1.2 As Sete Grandes Ideias da Arquitetura de Computadores

O capítulo apresenta sete princípios fundamentais da arquitetura de computadores, que orientam o design e a evolução dos sistemas computacionais:

  1. Uso de Abstração para Simplificar o Design – Permite projetar sistemas complexos de forma modular.
  2. Fazer com que o Caso Comum seja Rápido – Otimização das operações mais frequentes para aumentar o desempenho.
  3. Desempenho via Paralelismo – Execução de múltiplas operações simultaneamente para melhorar a velocidade de processamento.
  4. Desempenho via Pipeline – Divisão da execução de instruções em etapas sequenciais para maior eficiência.
  5. Desempenho via Previsão – Técnicas que antecipam resultados para reduzir atrasos computacionais.
  6. Hierarquia de Memória – Uso de múltiplos níveis de memória (cache, RAM, armazenamento) para otimizar acesso a dados.
  7. Confiabilidade via Redundância – Implementação de mecanismos para garantir funcionamento contínuo mesmo em caso de falhas.

1.3 Por baixo do seu Programa

O software é organizado em camadas hierárquicas, com as aplicações no topo e o hardware na base. Duas camadas fundamentais do software são:

  • Sistemas Operativos (SO) – Gerem recursos do computador e fornecem serviços como manipulação de ficheiros e controlo de dispositivos.
  • Compiladores – Traduzem programas escritos em linguagens de alto nível (como C ou Java) para instruções que o hardware pode executar.

A arquitetura de computadores é baseada numa linguagem binária simples, com instruções representadas por números em base 2. A introdução de compiladores e linguagens de alto nível revolucionou a programação, tornando-a mais acessível e eficiente.


1.4 Por Dentro do Computador

Os computadores são compostos por cinco componentes principais:

  1. Entrada (Input) – Dispositivos como teclados e sensores que inserem dados no sistema.
  2. Saída (Output) – Dispositivos como monitores e impressoras que exibem os resultados do processamento.
  3. Processador (CPU) – Unidade que executa instruções e controla a operação do sistema.
  4. Memória – Armazena dados e programas temporariamente durante a execução.
  5. Dispositivos de Armazenamento – Guardam dados permanentemente (discos rígidos, SSDs, memória flash).

Os dispositivos modernos também incluem ecrãs táteis (touchscreen), sensores e conectividade sem fios.


1.5 Tecnologias para Construção de Processadores e Memória

Os avanços tecnológicos permitiram a evolução dos processadores e memórias ao longo do tempo. O transistor, um interruptor eletrónico, é o componente fundamental dos circuitos integrados (chips), que contêm milhões ou bilhões desses dispositivos.

A Lei de Moore previa a duplicação da densidade dos transistores a cada dois anos, impulsionando melhorias no desempenho dos computadores. No entanto, essa tendência tem desacelerado recentemente devido a limitações físicas.

A fabricação de chips envolve um processo complexo que inclui:

  • Produção de lingotes de silício
  • Corte em wafers
  • Aplicação de múltiplas camadas de circuitos
  • Testes e embalagem dos chips

A eficiência na fabricação de chips influencia diretamente o custo dos dispositivos.


1.6 Desempenho

O desempenho de um computador pode ser medido por diversos critérios, como a rapidez na execução de tarefas ou a capacidade de processar múltiplos trabalhos simultaneamente. Para avaliar o desempenho, são utilizados benchmarks, que testam diferentes aspectos do hardware e software.


1.7 A Barreira de Energia (The Power Wall)

O aumento da frequência dos processadores levou a um consumo excessivo de energia e geração de calor, limitando os ganhos de desempenho. Para superar essa barreira, os designers passaram a focar-se em eficiência energética e computação paralela.


1.8 A Mudança para Multiprocessadores

Devido às limitações da velocidade do clock, a indústria passou a adotar processadores multinúcleo (multicore), que permitem a execução paralela de múltiplas tarefas. Isso exige que os programadores desenvolvam software que aproveite essa arquitetura.


1.9 Benchmarks: Avaliação do Intel Core i7

Para medir o desempenho real de um processador, são utilizados benchmarks, que são conjuntos de testes padronizados. O capítulo apresenta um estudo de caso do desempenho do Intel Core i7 em diversas aplicações.


1.10 Acelerando Computações: Multiplicação de Matrizes em Python

O capítulo ilustra como técnicas de otimização podem melhorar o desempenho de cálculos matemáticos em linguagens de alto nível, como Python.


1.11 Falácias e Armadilhas

Os autores alertam sobre equívocos comuns no design de computadores, como:

  • Assumir que maior frequência de clock significa automaticamente melhor desempenho.
  • Acreditar que um processador mais rápido melhorará o desempenho de qualquer programa.

1.12 Considerações Finais

O capítulo reforça a importância da compreensão da arquitetura de computadores para programadores e engenheiros, destacando que a evolução tecnológica continua a moldar o futuro da computação.


Computer Organization and Design RISC-V 2nd edition, Hennessy and Patterson, Cap 1





Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


sexta-feira, 14 de março de 2025

Problema II da 1ª frequência de 2023, de Máquinas Elétricas e Acionamentos

Transformador DC - Exercício resolvido - MEA - ENIDH.

A pág. 3 está aqui.

Problema II da 1ª frequência de 2023, de Máquinas Elétricas e Acionamentos


Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.



quinta-feira, 13 de março de 2025

Resumo extraído do Capítulo 1 do livro Control System Engineering, 6th Edition by Norman S. Nise



Introdução aos Sistemas de Controlo

1.1 Introdução

Sistemas de controlo fazem parte do dia a dia, sendo aplicados em diversas áreas, como indústria, espaço e biologia. Eles são compostos por subsistemas que interagem para obter uma saída desejada a partir de uma entrada especificada. Um exemplo comum é o elevador, que responde a um comando para subir ou descer até um determinado andar.

Os sistemas de controlo oferecem quatro principais vantagens:

  1. Amplificação de Potência

  2. Controlo Remoto

  3. Conveniência na Forma da Entrada

  4. Compensação de Perturbações

1.2 História dos Sistemas de Controlo

Os sistemas de controlo têm uma longa história, desde mecanismos da Grécia Antiga até os modernos sistemas automáticos:

  • Controlo de nível de líquidos: Relógios de água gregos utilizavam válvulas de flutuação.

  • Regulação de pressão do vapor: Introduzida no século XVII.

  • Controlo de velocidade: Governadores centrífugos foram utilizados em moinhos de vento e máquinas a vapor no século XVIII.

  • Estabilidade e Controlo Automático: No século XIX, Maxwell e Lyapunov formularam teorias matemáticas para garantir estabilidade.

  • Sistemas modernos: Durante o século XX, os avanços na eletrónica permitiram o desenvolvimento de sistemas de controlo complexos em aeronáutica, indústria e automação.

1.3 Configuração dos Sistemas de Controlo

Os sistemas de controlo podem ser classificados em dois tipos:

  • Sistemas de Controlo em Malha Aberta: Não corrigem erros automaticamente. Exemplo: uma torradeira que opera por tempo predefinido.

  • Sistemas de Controlo em Malha Fechada (Feedback): Monitorizam a saída e ajustam automaticamente. Exemplo: um termostato que regula a temperatura.

Os sistemas de malha fechada têm vantagens como maior precisão e menor sensibilidade a perturbações, mas podem ser mais complexos e caros.

1.4 Objetivos de Análise e Projeto

Os principais objetivos são:

  1. Resposta Transitória: Determina quão rapidamente um sistema responde a uma entrada.

  2. Erro em Regime Permanente: Mede a precisão da resposta final do sistema.

  3. Estabilidade: Garante que o sistema não apresente respostas divergentes.

1.5 Processo de Projeto

O projeto de um sistema de controlo segue seis etapas:

  1. Determinação dos requisitos físicos e especificações.

  2. Elaboração de um diagrama funcional.

  3. Representação do sistema em esquema elétrico e mecânico.

  4. Formulação do modelo matemático.

  5. Redução do diagrama de blocos para simplificação.

  6. Análise e ajustes no projeto para atender às especificações desejadas.

1.6 Projeto Assistido por Computador

Ferramentas como MATLAB e LabVIEW auxiliam na modelação, simulação e projeto de sistemas de controlo. Elas permitem ajustes rápidos e avaliações precisas.

1.7 O Engenheiro de Sistemas de Controlo

O engenheiro de controlo trabalha em diferentes disciplinas, incluindo engenharia mecânica, elétrica e computacional. O estudo de sistemas de controlo capacita os engenheiros a desenvolverem soluções que melhoram processos industriais, automação e robótica.


Capítulo 1 do livro "Control System Engineering, 6th Edition by Norman S. Nise"





Se quiser tutoria e/ou explicações sobre matérias que encontre neste blogue, contacte-nos, de preferência por email. Este blogue destina-se à divulgação dos nossos serviços. É apenas uma pequena amostra do que sabemos e podemos fazer. Veja a Lista de Matérias já disponíveis para explicações. Leia testemunhos de antigos alunos.


quarta-feira, 12 de março de 2025

Máquinas Elétricas e Acionamentos - Resolução de problema sobre máquina DC

MEA - ENIDH - Exame de 27-01-2025, prob1

Página 2 de 2. A pág.1 está aqui.


Resolução de problema sobre máquina DC. Página 2 de 2.




🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

terça-feira, 11 de março de 2025

Resumo extraído do Capítulo 1 do livro "Microelectronic Circuits", 6th Edition, de Sedra and Smith


O primeiro capítulo do livro "Microelectronic Circuits", 6th Edition, Sedra and Smith, introduz conceitos fundamentais sobre sinais e amplificadores, estabelecendo a base para o estudo dos circuitos electrónicos.

1. Introdução

O capítulo começa por destacar a importância dos circuitos eletrónicos na manipulação de sinais, mencionando a relevância da tecnologia de circuitos integrados (ICs) e do seu impacto na microeletrónica. O objetivo é introduzir os sinais e os amplificadores como elementos essenciais dos sistemas eletrónicos modernos.

2. Sinais

Os sinais representam informação e podem ser elétricos, como tensões e correntes. Para serem processados eletronicamente, os sinais devem ser convertidos em formas elétricas, o que é feito por transdutores. Dois modelos clássicos de representação de sistemas são a forma de Thévenin (fonte de tensão com resistência interna) e a forma de Norton (fonte de corrente com resistência interna).

3. Espectro de Frequência dos Sinais

A análise espectral é essencial para compreender a composição dos sinais. Utilizando as séries e transformadas de Fourier, qualquer sinal pode ser decomposto em sinusoides de diferentes frequências. Sinais periódicos têm espectros discretos, enquanto sinais não periódicos têm espectros contínuos.

4. Sinais Analógicos e Digitais

Os sinais analógicos variam continuamente no tempo, enquanto os digitais são representados por sequências de números. A conversão de sinais analógicos para digitais ocorre através da amostragem e quantização, realizada por conversores Analógico-Digital (ADC). A conversão inversa é feita pelos conversores Digital-Analógico (DAC).

5. Amplificadores

Os amplificadores aumentam a magnitude dos sinais elétricos, permitindo que sinais fracos sejam processados de forma eficaz. A linearidade é um fator crítico para evitar distorção, garantindo que a saída seja uma réplica ampliada da entrada. Existem diferentes tipos de amplificadores:

  • Amplificadores de tensão (aumentam a amplitude de um sinal de tensão)

  • Amplificadores de corrente (amplificam correntes)

  • Amplificadores de transcondutância (convertem tensão em corrente)

  • Amplificadores de transresistância (convertem corrente em tensão)

Os amplificadores também podem ser classificados em preamplificadores, que processam sinais fracos, e amplificadores de potência, que fornecem energia suficiente para acionar dispositivos como altifalantes.

6. Modelos de Circuito para Amplificadores

Para facilitar a análise dos amplificadores, utilizam-se modelos de circuitos que representam as suas características essenciais. O modelo básico de um amplificador de tensão inclui:

  • Resistência de entrada (Ri): determina a carga imposta ao sinal de entrada.

  • Resistência de saída (Ro): afeta a capacidade de entrega do sinal amplificado.

  • Ganho de tensão (Av): relação entre a tensão de saída e de entrada.

Em sistemas complexos, os amplificadores são frequentemente conectados em cascata para atingir melhores especificações.

7. Resposta em Frequência dos Amplificadores

A resposta em frequência caracteriza o desempenho do amplificador em diferentes frequências. Essa resposta é obtida analisando a magnitude e a fase do sinal de saída em relação à entrada para diversas frequências. A banda passante do amplificador é definida pelas frequências onde o ganho se mantém constante dentro de um intervalo aceitável.

Os amplificadores podem ser analisados como redes de constante de tempo única (STC), dividindo-se em:

  • Filtros passa-baixo (LP): atenuam frequências altas.

  • Filtros passa-alto (HP): atenuam frequências baixas.

A resposta em frequência pode ser expressa em decibéis (dB), sendo comum usar diagramas de Bode para representar a variação da magnitude e da fase com a frequência.


Capítulo 1 do livro "Microelectronic Circuits", 6th Edition, de Sedra and Smith


🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

Formulário de Contacto

Nome

Email *

Mensagem *