Pesquisar neste blogue

Mostrar mensagens com a etiqueta Força Electromotriz. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Força Electromotriz. Mostrar todas as mensagens

terça-feira, 8 de julho de 2025

Resumo extraído do Capítulo 32, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed

Capítulo 32 – Indutância


32.1 Auto-indução e Indutância

Quando fechamos um circuito com uma fonte de força electromotriz (f.e.m.), um interruptor e uma resistência, a corrente não atinge imediatamente o valor final dado por ε/R. À medida que a corrente aumenta, o campo magnético gerado pela corrente cria um fluxo magnético através da área do circuito. Segundo a Lei de Faraday, esta variação de fluxo induz uma f.e.m. no próprio circuito.

A f.e.m. induzida tem sinal oposto à f.e.m. da bateria — por isso chama-se força contra-electromotriz — e resiste ao aumento da corrente, fazendo com que esta cresça de forma gradual. Este fenómeno chama-se auto-indução, porque a variação de fluxo que causa a f.e.m. surge do próprio circuito.

A f.e.m. auto-induzida (eL) é proporcional à taxa de variação temporal da corrente:

eL=Ldidte_L = -L \frac{di}{dt}

onde L é a indutância, uma constante que depende da geometria do circuito (número de espiras, área, comprimento, etc.). Para um enrolamento de N espiras, com fluxo magnético Φ_B através de cada uma:

L=NΦBiL = \frac{N \Phi_B}{i}

A indutância mede a oposição a variações de corrente, de forma semelhante ao modo como a resistência mede a oposição ao fluxo de corrente. A unidade SI de indutância é o henry (H), definido como 1 V·s/A.

O exemplo clássico é o solenoide de N espiras, comprimento ℓ (muito maior que o raio) e área A:

L=μ0N2AL = \mu_0 \frac{N^2 A}{\ell}

Este exemplo mostra que L depende fortemente do número de espiras ao quadrado e da geometria do enrolamento. A analogia com a capacitância (dependência da geometria das placas) e com a resistência (dependência do comprimento e área do condutor) é salientada.


32.2 Circuitos RL

Um circuito RL contém uma resistência e uma bobine (indutor) ligadas em série a uma fonte de f.e.m. A presença de uma bobine impede mudanças instantâneas na corrente. Quando se fecha o interruptor, a corrente começa em zero e cresce de forma exponencial, pois a força contra-electromotriz da bobine opõe-se ao aumento.

Aplicando a lei das malhas de Kirchhoff:

εiRLdidt=0\varepsilon - iR - L \frac{di}{dt} = 0

Resolvendo a equação diferencial obtém-se:

i(t)=εR(1et/τ)i(t) = \frac{\varepsilon}{R} \left(1 - e^{-t/\tau}\right)

com a constante de tempo:

τ=LR\tau = \frac{L}{R}

Esta constante representa o tempo necessário para a corrente atingir 63,2% do valor final (ε/R). Quanto maior a indutância L ou menor a resistência R, mais lenta será a resposta do circuito.

Quando a fonte é desligada (substituída por um curto-circuito), o circuito passa a ter apenas a resistência e a bobine. A corrente decresce exponencialmente:

i(t)=Iiet/τi(t) = I_i e^{-t/\tau}

A bobine impede que a corrente caia instantaneamente a zero. A força contra-electromotriz gerada tenta manter a corrente, libertando a energia armazenada no campo magnético.

Em resumo, a bobine «suaviza» as variações de corrente, criando uma resposta "preguiçosa" ou atrasada às mudanças de tensão.


32.3 Energia num Campo Magnético

Quando uma bobine conduz corrente, armazena energia no seu campo magnético. Parte da energia fornecida pela fonte é dissipada em calor na resistência, mas parte é armazenada como energia magnética na bobine.

A taxa de fornecimento de energia pela fonte é:

εi=iR+Lididt\varepsilon i = iR + L i \frac{di}{dt}

O termo iRiR é a potência dissipada como calor. Já LididtL i \frac{di}{dt} corresponde à taxa de armazenamento de energia na bobine. Integrando, obtém-se a energia total armazenada:

UB=12Li2U_B = \frac{1}{2} L i^2

Esta forma é análoga à energia armazenada num condensador:

UE=12CV2U_E = \frac{1}{2} C V^2

Para um solenoide (ou outra distribuição de campo magnético conhecido), podemos calcular a densidade de energia magnética (energia por unidade de volume):

uB=B22μ0u_B = \frac{B^2}{2\mu_0}

Este resultado mostra que a energia armazenada no campo magnético depende do quadrado da intensidade do campo, de forma semelhante à densidade de energia num campo eléctrico.

Um exemplo trabalhado no texto demonstra que quando a bobine descarrega (por exemplo, num circuito RL isolado), toda a energia inicialmente armazenada no campo magnético se converte em energia interna (calor) na resistência.


32.4 Indutância Mútua

Nesta secção, introduz-se o conceito de indutância mútua. Quando há dois circuitos próximos, a corrente variável num deles pode induzir uma f.e.m. no outro, porque o campo magnético de um atravessa a área do outro.

Imagina duas bobinas próximas (bobina 1 e bobina 2):

  • A corrente i₁ em 1 cria um campo magnético. Parte desse campo atravessa a área de 2, gerando fluxo magnético Φ₁₂ em 2.

  • Se i₁ varia no tempo, Φ₁₂ varia, induzindo uma f.e.m. em 2.

Define-se indutância mútua M₁₂ como:

M12=N2Φ12i1M_{12} = \frac{N_2 \Phi_{12}}{i_1}

onde N₂ é o número de espiras da bobina 2.

A f.e.m. induzida em 2 devido a i₁ é:

ε2=M12di1dt\varepsilon_2 = -M_{12} \frac{di_1}{dt}

Analogamente, se i₂ em 2 variar, induz uma f.e.m. em 1:

ε1=M21di2dt\varepsilon_1 = -M_{21} \frac{di_2}{dt}

Pode-se demonstrar que M₁₂ = M₂₁ = M, porque depende apenas da geometria mútua dos circuitos e das suas orientações.

A unidade de indutância mútua é o henry (H), como na auto-indução.

Exemplo prático: carregadores sem fios. Uma bobina na base (primária) cria um campo magnético variável, induzindo corrente na bobina do aparelho (secundária).


32.5 Oscilações num Circuito LC

Nesta secção estuda-se o circuito LC ideal: um condensador ligado a uma bobine, sem resistência e sem radiação electromagnética.

  • Supondo o condensador inicialmente carregado (carga Q_max), quando o circuito se fecha, a energia armazenada no campo eléctrico do condensador começa a transferir-se para a bobine.

  • À medida que o condensador se descarrega, a corrente aumenta, armazenando energia no campo magnético da bobine.

  • Quando o condensador está totalmente descarregado, a energia está toda na bobine.

  • A corrente continua, recarregando o condensador com polaridade oposta.

Este processo repete-se, criando oscilações electromagnéticas entre energia eléctrica (condensador) e magnética (bobine).

Matematicamente:

  • A equação diferencial do circuito é:

d2qdt2+1LCq=0\frac{d^2q}{dt^2} + \frac{1}{LC} q = 0

  • Solução:

q(t)=Qmaxcos(ωt+ϕ)q(t) = Q_{\text{max}} \cos(\omega t + \phi)

onde

ω=1LC\omega = \frac{1}{\sqrt{LC}}

é a frequência angular natural das oscilações.

  • A corrente é:

i(t)=dqdt=ωQmaxsin(ωt+ϕ)i(t) = \frac{dq}{dt} = -\omega Q_{\text{max}} \sin(\omega t + \phi)

Observa-se que carga e corrente estão desfasadas de 90°: quando a carga é máxima, a corrente é zero e vice-versa.

A energia total do circuito (conservada no ideal):

U=12CV2+12Li2U = \frac{1}{2} C V^2 + \frac{1}{2} L i^2

oscila entre o campo eléctrico do condensador e o campo magnético da bobine, mas permanece constante no tempo se não houver perdas.

Analogia mecânica: é como um sistema massa–mola sem atrito, em oscilação harmónica simples.


32.6 O Circuito RLC

Aqui estuda-se o circuito RLC em série (resistência R, bobine L e condensador C).

Ao contrário do LC ideal:

  • A resistência provoca dissipação de energia.

  • A energia armazenada no campo eléctrico do condensador e no campo magnético da bobine diminui com o tempo, transformando-se em energia interna (calor) na resistência.

A equação diferencial que descreve o circuito é:

Ld2qdt2+Rdqdt+qC=0L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{C} = 0

Esta é matematicamente equivalente à equação de movimento de um oscilador harmónico amortecido:

md2xdt2+bdxdt+kx=0m \frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = 0

onde:

  • q ↔ posição x

  • i ↔ velocidade dx/dt

  • L ↔ massa m

  • R ↔ coeficiente de atrito b

  • 1/C ↔ constante elástica k

Solução para amortecimento fraco (R pequeno):

q(t)=QmaxeRt/2Lcos(vdt)q(t) = Q_{\text{max}} e^{-Rt/2L} \cos(v_d t)

com

vd=1LC(R2L)2v_d = \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}

 As oscilações são amortecidas: a amplitude decai exponencialmente com o tempo.

 Para valores altos de R, as oscilações podem desaparecer totalmente (sobreamortecimento ou amortecimento crítico).

O comportamento geral do circuito RLC inclui:

  • Oscilações amortecidas (R pequeno).

  • Resposta crítica ou sobreamortecida (R grande).


32.7 Resumo

  • A auto-indução L mede a oposição de um circuito a variações de corrente:

eL=Ldidte_L = -L \frac{di}{dt}

  • A energia armazenada num campo magnético é:

UB=12Li2U_B = \frac{1}{2} L i^2

  • A densidade de energia magnética (no campo B):

uB=B22μ0u_B = \frac{B^2}{2\mu_0}

  • Indutância mútua M relaciona as f.e.m. induzidas entre dois circuitos:

ε2=Mdi1dt,ε1=Mdi2dt\varepsilon_2 = -M \frac{di_1}{dt}, \quad \varepsilon_1 = -M \frac{di_2}{dt}

  • Circuito RL: apresenta resposta retardada à variação de corrente, com constante de tempo τ = L/R.

  • Circuito LC: oscilações sinusoidais ideais, sem perdas:

ω=1LC\omega = \frac{1}{\sqrt{LC}}

  • Circuito RLC: oscilações amortecidas, com energia dissipada na resistência.


Capa do Capítulo 31, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed




🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

sábado, 5 de julho de 2025

Resumo extraído do Capítulo 31, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed

Capítulo 31 – Lei de Faraday



31.1 – Lei da Indução de Faraday

Esta secção introduz a descoberta de Faraday de que um campo magnético variável no tempo pode induzir uma corrente eléctrica num circuito. Experiências simples com uma espira de fio e um íman mostram que mover o íman em relação à espira gera uma corrente detectável. A corrente só aparece quando há variação do fluxo magnético (e não com campos magnéticos constantes), sendo chamada de corrente induzida, e surge devido a uma força electromotriz (fem) induzida.

A lei de Faraday quantifica este fenómeno:

  • Para uma espira:
    E=dΦBdt\mathcal{E} = -\dfrac{d\Phi_B}{dt}

  • Para uma bobina com NN espiras:
    E=NdΦBdt\mathcal{E} = -N\dfrac{d\Phi_B}{dt}

O fluxo magnético ΦB\Phi_B é dado por:

ΦB=BA=BAcosθ\Phi_B = \vec{B} \cdot \vec{A} = BA\cos\theta

e pode variar:

  • pela mudança do campo magnético BB,

  • pela mudança da área da espira,

  • pela mudança da orientação entre o campo e a espira.

Apresentam-se aplicações práticas como o interruptor de circuito por falha à terra (GFCI) e as bobinas de captação de guitarras eléctricas, que funcionam com base na indução de fem por variação de fluxo magnético.


31.2 – Fem de Movimento 

Esta secção analisa a indução de fem em condutores em movimento dentro de campos magnéticos constantes. Um condutor rectilíneo que se move perpendicularmente a um campo magnético sofre uma separação de cargas devido à força magnética sobre os electrões, criando um campo eléctrico interno e uma diferença de potencial:

ΔV=Bv\Delta V = B\ell v

Quando este condutor faz parte de um circuito fechado (por exemplo, uma barra a deslizar sobre calhas condutoras), há corrente induzida e podem aplicar-se as leis de Faraday e da conservação de energia:

  • A fem induzida é:

    E=Bv\mathcal{E} = -B\ell v
  • A corrente induzida:

    I=BvRI = \dfrac{B\ell v}{R}

A força necessária para manter a barra a mover-se com velocidade constante deve compensar a força magnética (contrária ao movimento), garantindo conservação da energia:

P=Faplicadav=E2RP = F_{\text{aplicada}} v = \dfrac{\mathcal{E}^2}{R}

Exemplos analisados incluem a barra deslizante e uma barra rotativa num campo magnético, mostrando como a velocidade angular ou linear influencia a fem gerada.


31.3 – Lei de Lenz

A Lei de Lenz dá ao sinal negativo da Lei de Faraday um significado físico: a corrente induzida flui de forma a opor-se à variação do fluxo magnético que a causou. Isto está intimamente ligado ao princípio da conservação da energia.

  • Se o fluxo aumenta, a corrente induzida cria um campo que se opõe ao aumento.

  • Se o fluxo diminui, a corrente induzida cria um campo que tenta manter o fluxo original.

Exemplos incluem:

  • A barra a mover-se numa calha com campo constante: se o fluxo aumenta, a corrente opõe-se, gerando uma força contrária ao movimento.

  • Um íman a aproximar-se de uma espira: o sentido da corrente depende de se o fluxo está a aumentar ou diminuir.

Apresenta-se também o paradoxo energético: se a corrente não se opusesse à variação de fluxo, poder-se-ia criar energia a partir do nada, violando a conservação da energia. Assim, a lei de Lenz garante que a energia seja conservada.


31.4 – Fem Induzida e Campos Eléctricos

Nesta secção, explora-se como um campo magnético variável no tempo induz um campo eléctrico, mesmo na ausência de um fio condutor. A corrente induzida numa espira metálica é causada por um campo eléctrico induzido que age sobre as cargas no fio. Este campo não é conservativo (ao contrário do campo electrostático), pois o trabalho realizado ao mover uma carga à volta de um percurso fechado não é zero.

A indução do campo eléctrico é consequência directa da Lei de Faraday. Considerando uma espira circular de raio rr, quando o fluxo magnético varia com o tempo, surge um campo eléctrico E\vec{E}, tangente à espira, tal que:

Eds=dΦBdt\oint \vec{E} \cdot d\vec{s} = -\dfrac{d\Phi_B}{dt}

O campo eléctrico induzido depende da variação temporal do fluxo e não da presença de cargas. Esta propriedade é fundamental para a compreensão das ondas electromagnéticas, onde campos eléctricos e magnéticos se induzem mutuamente.


31.5 – Geradores e Motores

Aqui são descritos os princípios de funcionamento dos geradores e motores eléctricos, ambos baseados na Lei de Faraday.

  • Geradores de corrente alternada (AC): um laço de fio é feito rodar num campo magnético, o que provoca uma variação periódica do fluxo e, consequentemente, uma fem sinusoidal:

    E=NBAvsin(ωt)\mathcal{E} = NBAv \sin(\omega t)
  • Geradores de corrente contínua (DC): usam um comutador que inverte as ligações a cada meia rotação, de forma a manter a polaridade constante, embora a tensão varie em valor.

Os motores eléctricos funcionam de forma inversa: recebem energia eléctrica e convertem-na em trabalho mecânico. À medida que o motor acelera, gera uma força contra-electromotriz que reduz a corrente de entrada.

Exemplo aplicado: quando um motor é bloqueado (por exemplo, numa serra), a corrente aumenta significativamente, o que pode danificar o equipamento devido ao aquecimento excessivo.


31.6 – Correntes de Foucault 

As correntes de Foucault são correntes circulares induzidas em massas metálicas (não em fios) em movimento através de campos magnéticos. Estas correntes criam campos magnéticos opostos à variação que as gerou, de acordo com a Lei de Lenz.

Exemplo clássico: uma placa metálica a oscilar entre os polos de um íman. As correntes de Foucault geram forças magnéticas que travam o movimento, levando eventualmente à paragem. Se a placa tiver cortes ou ranhuras, estas correntes são suprimidas, reduzindo o efeito de travagem.

Aplicações:

  • Travões electromagnéticos em comboios e metros.

  • Dispositivos de segurança (ex. serras) que usam estas correntes para parar rapidamente peças móveis.

  • Para reduzir perdas energéticas (aquecimento), as peças condutoras em transformadores e motores são laminadas, ou seja, feitas em camadas finas separadas por materiais isolantes.


Resumo

  • A Lei de Faraday estabelece que a fem induzida é proporcional à variação temporal do fluxo magnético:

    E=dΦBdt\mathcal{E} = -\dfrac{d\Phi_B}{dt}
  • A Lei de Lenz indica que a corrente induzida opõe-se à causa que a gera, garantindo a conservação da energia.

  • Um campo magnético variável no tempo pode induzir um campo eléctrico não conservativo.

  • A fem de movimento é induzida quando um condutor se move num campo magnético:

    E=Bv\mathcal{E} = B\ell v
  • Geradores e motores baseiam-se na variação do fluxo magnético e no aproveitamento da energia eléctrica e mecânica.

  • As correntes de Foucault são efeitos secundários importantes, podendo ser úteis (travagem) ou indesejáveis (perdas energéticas).





🎓 Quer melhorar os seus resultados na universidade? 
Disponibilizamos explicações de ensino superior adaptadas às suas necessidades, com acompanhamento personalizado para diferentes disciplinas.
✔ Explore a nossa Lista de Matérias disponíveis.
🌟 Veja os testemunhos de alunos que já atingiram melhores notas com o nosso apoio.
📬 Contacte-nos por email ou pelo formulário de contacto e obtenha a ajuda que precisa para dominar os seus estudos!

EuExplico Eu Explico Explicações de Ensino Superior

segunda-feira, 19 de maio de 2025

Resumo extraído do Capítulo 28, do livro: Physics for Scientists and Engineers with Modern Physics, 9th Ed

Capítulo 28 – Corrente contínua

Secção 28.1 – Força Electromotriz (f.e.m.)
Nesta secção introduz-se o conceito de força electromotriz (f.e.m.) como a diferença de potencial máxima que uma fonte (por exemplo, uma bateria) pode fornecer entre os seus terminais, denotada por E\mathcal{E}. Embora o termo “força” seja histórico — pois a f.e.m. não é uma força mas sim uma tensão — pode entender-se a fonte de f.e.m. como uma “bomba de cargas” que eleva as cargas do potencial mais baixo para o mais alto dentro da bateria.

Num circuito real, a bateria apresenta uma resistência interna rr, de modo que a tensão nos terminais, VtermV_{\text{term}}, difere da f.e.m. quando há corrente. A relação fundamental é

Vterm=EIr,V_{\text{term}} = \mathcal{E} - I\,r,

onde II é a corrente do circuito. Assim, quando o circuito está em circuito aberto (I=0I=0), Vterm=EV_{\text{term}} = \mathcal{E} (tensão em vazio), mas quando a corrente circula, parte da energia é dissipada internamente na bateria.

Combinando-se com a lei de Ohm para a resistência externa RR, obtém-se

E=IR+IrI=ER+r.\mathcal{E} = I R + I r \quad\Longrightarrow\quad I = \frac{\mathcal{E}}{R + r}.

Multiplicando por II vemos ainda que a potência total fornecida pela fonte, IEI\mathcal{E}, divide-se entre I2RI^2 R no circuito externo e I2rI^2 r na resistência interna. Para maximizar a potência útil, deve minimizar-se rr.



Secção 28.2 – Resistências em Série e em Paralelo
Descreve-se primeiro a montagem em série, onde resistências R1,R2,R_1, R_2, \dots partilham a mesma corrente II. A tensão total divide-se pelas resistências, resultando numa resistência equivalente

Req=R1+R2+,R_{\mathrm{eq}} = R_1 + R_2 + \cdots,

sempre maior do que qualquer resistência individual. Uma falha em série causa circuito aberto e interrompe toda a corrente.

Em seguida analisa-se a montagem em paralelo, em que todos as resistências estão sujeitos à mesma tensão VV mas a corrente divide-se em cada ramo. A resistência equivalente satisfaz

1Req=1R1+1R2+,\frac{1}{R_{\mathrm{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots,

sendo ReqR_{\mathrm{eq}} sempre inferior à mais pequena das resistências. Neste esquema, uma falha num ramo não impede a corrente nos restantes.

São também discutidas aplicações práticas: em paralelo, cada aparelho doméstico opera independentemente sob a mesma tensão; em série, como nos pequenos enfeites de Natal, usa-se um jumper interno para manter o circuito mesmo quando um filamento queima, mas isso aumenta a corrente nos restantes.



Secção 28.3 – Leis de Kirchhoff
Para circuitos mais complexos, que não se reduzem a simples séries ou paralelos, aplicam-se as duas leis de Kirchhoff:

  1. Lei dos Nós: a soma algébrica das correntes num nó (ponto de ramificação) é zero, refletindo a conservação de carga:
    IentradasIsaıˊdas=0.\sum I_{\text{entradas}} - \sum I_{\text{saídas}} = 0.

  2. Lei das Malhas: ao percorrer uma malha fechada, a soma das diferenças de potencial é nula, expressando a conservação de energia:
    ΔV=0.\sum \Delta V = 0.

Para aplicar, escolhe-se direções arbitrárias para as correntes e percorrem-se laços assumindo sinal positivo para subidas de potencial (por exemplo, atravessar a f.e.m. de – para +) e negativo para descidas (queda IRIR no sentido da corrente). Resolve-se então o sistema de equações lineares obtido, onde soluções negativas indicam correntes no sentido oposto ao assumido.

Este método geral permite analisar circuitos de múltiplos ramos e fontes, sendo essencial em casos de malhas e nós em número maior do que os casos tratáveis apenas com combinações série/paralelo.



Secção 28.4 – Circuitos RC

Num circuito RC em série, uma resistência R e um condensador C estão ligados a uma fonte de emf E\mathcal{E} através de um interruptor. Existem dois casos distintos:

  1. Carregamento do condensador

    • No instante em que o interruptor é colocado na posição de carga (t=0t=0), o condensador está descarregado (q=0q=0) e a corrente inicial máxima é

      Ii=ER.I_i=\frac{\mathcal{E}}{R}.

    • À medida que o condensador acumula carga, a diferença de potencial q/Cq/C cresce, reduzindo a corrente segundo a equação diferencial

      EqCiR=0,i=dqdt.\mathcal{E}-\frac{q}{C}-iR=0,\quad i=\frac{\mathrm{d}q}{\mathrm{d}t}.

      Integrando, obtém-se

      q(t)=Qmax(1et/RC),Qmax=CE,q(t)=Q_{\max}\bigl(1-e^{-t/RC}\bigr),\quad Q_{\max}=C\mathcal{E}, i(t)=ERet/RC.i(t)=\frac{\mathcal{E}}{R}e^{-t/RC}.

      A constante de tempo do circuito é

      τ=RC,\tau=RC,

      e caracteriza o decaimento exponencial: após t=τt=\tau, a carga atinge 63,2 % de QmaxQ_{\max} e a corrente cai para 36,8 % de IiI_i.

  2. Descarregamento do condensador

    • Se, após carregado, o interruptor passa para a posição de descarga num circuito sem fonte de emf, a equação da malha torna-se

      qC+iR=0,i=dqdt.\frac{q}{C}+iR=0,\quad i=-\frac{\mathrm{d}q}{\mathrm{d}t}.

      A solução é

      q(t)=Qiet/RC,i(t)=QiRCet/RC,q(t)=Q_i\,e^{-t/RC},\quad i(t)=-\frac{Q_i}{RC}\,e^{-t/RC},

      onde QiQ_i é a carga inicial do condensador e o sinal negativo em i(t)i(t) indica que a corrente flui no sentido oposto ao do carregamento.



Secção 28.5 – Instalações Elétricas Domésticas e Segurança

  1. Ligação da rede

    • A empresa de energia fornece duas fases em paralelo: o fio “vivo” (aprox. 230 V) e o fio neutro (0 V). Um contador mede a energia no fio vivo antes de o circuito interior se subdividir em vários ramos, cada um protegido por fusíveis ou disjuntores dimensionados para a corrente máxima do ramo.

    • Num circuito típico, aparelhos como uma torradeira (1 000 W), micro-ondas (1 300 W) e cafeteira (800 W) são ligados em paralelo consomem correntes individuais.

  2. Proteções e riscos

    • Curto-circuito: contacto acidental do fio vivo com terra ou neutro produz corrente muito elevada e dispara o disjuntor, evitando sobreaquecimento.

    • Fio de terra: em tomadas de três pinos, o terceiro fio liga a carcaça dos aparelhos à terra; em caso de fuga do fio vivo ao chassis, a corrente prefere esse caminho de baixa resistência, poupando o utilizador a choque elétrico.

    • GFCI (Ground-Fault Circuit Interrupter): usado em zonas húmidas (cozinhas, casas de banho), desliga o circuito em <1 ms ao detetar fugas de corrente, protegendo contra choques elétricos.

    • Efeitos no corpo humano: correntes ≤5 mA provocam apenas formigueiro; entre 10 mA e 100 mA podem causar contrações musculares e paragem respiratória; correntes de ≈1 A produzem queimaduras graves e podem ser fatais. Contacto com água ou superfícies metálicas aumenta o risco.


Resumo do Capítulo 28

  • Força electromotriz (f.e.m.) E\mathcal{E}: tensão máxima que uma fonte fornece em vazio; tensão aos terminais em carga:

    Vterm=EIr.V_{\rm term}=\mathcal{E}-I\,r.
  • Resistências em série e paralelo:

    Req(seˊrie)=iRi,1Req(par)=i1Ri.R_{\rm eq}^{(\text{série})}=\sum_i R_i, \quad \frac{1}{R_{\rm eq}^{(\text{par})}}=\sum_i\frac{1}{R_i}.
  • Leis de Kirchhoff:

    1. Lei dos Nós: Ientr=Isai\sum I_{\rm entr}=\sum I_{\rm sai}.

    2. Lei das Malhas: ΔV=0\sum\Delta V=0 em cada malha, com sinais conforme o sentido da corrente e polaridade das fontes.

  • Circuitos RC:

    • Carregamento:
      q(t)=CE(1et/RC),i(t)=ERet/RC.\displaystyle q(t)=C\mathcal{E}(1-e^{-t/RC}),\quad i(t)=\tfrac{\mathcal{E}}{R}e^{-t/RC}.

    • Descarregamento:
      q(t)=Qiet/RC,i(t)=QiRCet/RC.\displaystyle q(t)=Q_i\,e^{-t/RC},\quad i(t)=-\tfrac{Q_i}{RC}e^{-t/RC}.


 



Formulário de Contacto

Nome

Email *

Mensagem *